
A Minicourse on

Multithreaded Programming

Charles E. Leiserson

Harald Prokop

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, Massachusetts 02139

fcel,prokopg@lcs.mit.edu

July 17, 1998

Abstract

These notes contain two lectures that teach multithreaded algorithms using a Cilk-

like [7, 9, 11] model. These lectures were designed for the latter part of the MIT

undergraduate class 6.046 Introduction to Algorithms. The style of the lecture notes

follows that of the textbook by Cormen, Leiserson, and Rivest [8], but the pseudocode

from that textbook has been \Cilki�ed" to allow it to describe multithreaded algo-

rithms.

The �rst lecture teaches the basics behind multithreading, including de�ning the

measures of work and critical-path length. It culminates in the greedy scheduling

theorem due to Graham and Brent [10, 6]. The second lecture shows how parallel

applications, including matrix multiplication and sorting, can be analyzed using divide-

and-conquer recurrences.

1 Multithreaded programming

As multiprocessor systems have become increasingly available, interest has grown in parallel

programming. Multithreaded programming is a programming paradigm in which a single

program is broken into multiple threads of control which interact to solve a single problem.

These notes provide an introduction to the analysis of multithreaded algorithms.

This research was supported in part by the Defense Advanced Research Projects Agency (DARPA)

under Grant F30602-97-1-0270.

1

1.1 Model

Our model of multithreaded computation is based on the procedure abstraction found in vir-

tually any programming language. As an example, the procedure Fib gives a multithreaded

algorithm for computing the Fibonacci numbers:

1

Fib(n)

1 if n < 2

2 then return n

3 else x spawn Fib(n� 1)

4 y spawn Fib(n� 2)

5 sync

6 return (x+ y)

A spawn is the parallel analog of an ordinary subroutine call. The keyword spawn

before the subroutine call in line 3 indicates that the subprocedure Fib(n�1) can execute in

parallel with the procedure Fib(n) itself. Unlike an ordinary function call, however, where

the parent is not resumed until after its child returns, in the case of a spawn, the parent

can continue to execute in parallel with the child. In this case, the parent goes on to spawn

Fib(n�2). In general the parent can continue to spawn o� children, producing a high degree

of parallelism.

A procedure cannot safely use the return values of the children it has spawned until it

executes a sync statement. If any of its children have not completed when it executes a

sync, the procedure suspends and does not resume until all of its children have completed.

When all of its children return, execution of the procedure resumes at the point immediately

following the sync statement. In the Fibonacci example, the sync statement in line 5 is

required before the return statement in line 6 to avoid the anomaly that would occur if x

and y were summed before each had been computed.

The spawn and sync keywords specify logical parallelism, not \actual" parallelism.

That is, these keywords indicate which code may possibly execute in parallel, but what ac-

tually runs in parallel is determined by a scheduler , which maps the dynamically unfolding

computation onto the available processors.

We can view a multithreaded computation in graph-theoretic terms as a dynamically

unfolding dag G = (V;E), as is shown in Figure 1 for Fib. We de�ne a thread to be

a maximal sequence of instructions not containing the parallel control statements spawn,

sync, and return. Threads make up the set V of vertices of the multithreaded computation

dag G. Each procedure execution is a linear chain of threads, each of which is connected to

its successor in the chain by a continuation edge. When a thread u spawns a thread v, the

dag contains a spawn edge (u; v) 2 E, as well as a continuation edge from u to u's successor

in the procedure. When a thread u returns, the dag contains an edge (u; v), where v is the

thread that immediately follows the next sync in the parent procedure. Every computation

starts with a single initial thread and (assuming that the computation terminates), ends

1

This algorithm is a terrible way to compute Fibonacci numbers, since it runs in exponential time when

logarithmic methods are known [8, page 850], but it serves as a good didactic example.

2

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

fib(3)

fib(2)

fib(1)

fib(1)

fib(2)

fib(1) fib(0)

fib(0)

fib(4)

Figure 1: A dag representing the multithreaded computation of Fib(4). Threads are shown as

circles, and each group of threads belonging to the same procedure are surrounded by a rounded

rectangle. Downward edges are spawns dependencies, horizontal edges represent continuation de-

pendencies within a procedure, and upward edges are return dependencies.

with a single �nal thread . Since the procedures are organized in a tree hierarchy, we can

view the computation as a dag of threads embedded in the tree of procedures.

1.2 Performance Measures

Two performance measures su�ce to gauge the theoretical e�ciency of multithreaded algo-

rithms. We de�ne the work of a multithreaded computation to be the total time to execute

all the operations in the computation on one processor. We de�ne the critical-path length

of a computation to be the longest time to execute the threads along any path of dependen-

cies in the dag. Consider, for example, the computation in Figure 1. Suppose that every

thread can be executed in unit time. Then, the work of the computation is 17, and the

critical-path length is 8.

When a multithreaded computation is executed on a given number P of processors, its

running time depends on how e�ciently the underlying scheduler can execute it. Denote

by T

P

the running time of a given computation on P processors. Then, the work of the

computation can be viewed as T

1

, and the critical-path length can be viewed as T

1

.

The work and critical-path length can be used to provide lower bounds on the running

time on P processors. We have

T

P

� T

1

=P ; (1)

since in one step, a P -processor computer can do at most P work. We also have

T

P

� T

1

; (2)

since a P -processor computer can do no more work in one step than an in�nite-processor

computer.

3

The speedup of a computation on P processors is the ratio T

1

=T

P

, which indicates how

many times faster the P -processor execution is than a one-processor execution. If T

1

=T

P

=

�(P), then we say that the P -processor execution exhibits linear speedup. The maximum

possible speedup is T

1

=T

1

, which is also called the parallelism of the computation, because

it represents the average amount of work that can be done in parallel for each step along the

critical path. We denote the parallelism of a computation by P .

1.3 Greedy Scheduling

The programmer of a multithreaded application has the ability to control the work and

critical-path length of his application, but he has no direct control over the scheduling of his

application on a given number of processors. It is up to the runtime scheduler to map the

dynamically unfolding computation onto the available processors so that the computation

executes e�ciently. Good on-line schedulers are known [3, 4, 5] but their analysis is compli-

cated. For simplicity, we'll illustrate the principles behind these schedulers using an o�-line

\greedy" scheduler.

A greedy scheduler schedules as much as it can at every time step. On a P -processor

computer, time steps can be classi�ed into two types. If there are P or more threads ready to

execute, the step is a complete step, and the scheduler executes any P threads of those ready

to execute. If there are fewer than P threads ready to execute, the step is an incomplete

step, and the scheduler executes all of them. This greedy strategy is provably good.

Theorem 1 (Graham [10], Brent [6]) A greedy scheduler executes any multithreaded com-

putation G with work T

1

and critical-path length T

1

in time

T

P

� T

1

=P + T

1

(3)

on a computer with P processors.

Proof. For each complete step, P work is done by the P processors. Thus, the number

of complete steps is at most T

1

=P , because after T

1

=P such steps, all the work in the

computation has been performed. Now, consider an incomplete step, and consider the subdag

G

0

of G that remains to be executed. Without loss of generality, we can view each of the

threads executing in unit time, since we can replace a longer thread with a chain of unit-time

threads. Every thread with in-degree 0 is ready to be executed, since all of its predecessors

have already executed. By the greedy scheduling policy, all such threads are executed, since

there are strictly fewer than P such threads. Thus, the critical-path length of G

0

is reduced

by 1. Since the critical-path length of the subdag remaining to be executed decreases by 1

each for each incomplete step, the number of incomplete steps is at most T

1

. Each step is

either complete or incomplete, and hence Inequality (3) follows.

Corollary 2 A greedy scheduler achieves linear speedup when P = O(P).

Proof. Since P = T

1

=T

1

, we have P = O(T

1

=T

1

), or equivalently, that T

1

= O(T

1

=P).

Thus, we have T

P

� T

1

=P + T

1

= O(T

1

=P).

4

1.4 Cilk and

?

Socrates

Cilk [4, 7, 11] is a parallel, multithreaded language based on the serial programming lan-

guage C. Instrumentation in the Cilk scheduler provides an accurate measure of work and

critical path. Cilk's randomized scheduler provably executes a multithreaded computation

on a P -processor computer in T

P

= T

1

=P +O(T

1

) expected time. Empirically, the scheduler

achieves T

P

� T

1

=P +T

1

time, yielding near-perfect linear speedup if P � P . You can read

more about Cilk on the Web at http://theory.lcs.mit.edu/

~

cilk.

Among the applications that have been programmed in Cilk are the

?

Socrates and

Cilkchess chess-playing programs. These programs have won numerous prizes in interna-

tional competition and are considered to be among the strongest in the world. An interesting

anomaly occurred during the development of

?

Socrates which was resolved by understanding

the measures of work and critical-path length.

The

?

Socrates program was initially developed on a 32-processor computer at MIT, but it

was intended to run on a 512-processor computer at the National Center for Supercomputing

Applications (NCSA) at the University of Illinois. A clever optimization was proposed which,

during testing at MIT, caused the program to run much faster than the original program.

Nevertheless, the optimization was abandoned, because an analysis of work and critical-path

length indicated that the program would actually be slower on the NCSA machine.

Let us examine this anomaly in more detail. For simplicity, the actual timing numbers

have been simpli�ed. The original program ran in T

32

= 65 seconds at MIT on 32 processors.

The \optimized" program ran in T

0

32

= 40 seconds also on 32 processors. The original

program had work T

1

= 2048 seconds and critical-path length T

1

= 1 second. Using the

formula T

P

= T

1

=P + T

1

as a good approximation of runtime, we discover that indeed

T

32

= 65 = 2048=32+1. The \optimized" program had work T

1

= 1024 seconds and critical-

path length T

1

= 8 seconds, yielding T

0

32

= 40 = 1024=32+8. But, now let us determine the

runtimes on 512 processors. We have T

512

= 2048=512+1 = 5 and T

0

512

= 1024=512+8 = 10,

which is twice as slow! Thus, by using work and critical-path length, we can predict the

performance of a multithreaded computation.

Exercise 1-1. Sketch the multithreaded computation that results from executing Fib(5).

Assume that all threads in the computation execute in unit time. What is the work of

the computation? What is the critical-path length? Show how to schedule the dag on

2 processors in a greedy fashion by labeling each thread with the time step on which it

executes.

Exercise 1-2. Write a multithreaded procedure Sum(A), where A[1 : : n] is an array, which

uses divide-and-conquer to sum the elements of the array A in parallel.

Exercise 1-3. Prove that a greedy scheduler achieves the stronger bound

T

P

� (T

1

� T

1

)=P + T

1

: (4)

Exercise 1-4. Prove that the time for a greedy scheduler to execute any multithreaded

computation is within a factor of 2 of the time required by an optimal scheduler.

5

Exercise 1-5. For what number P of processors do the two chess programs described in

this section run equally fast?

Exercise 1-6. Professor Tweed takes some measurements of his (deterministic) multi-

threaded program, which is scheduled using a greedy scheduler, and �nds that T

4

= 80

seconds and T

64

= 10 seconds. What is the fastest that the professor's computation could

possibly run on 10 processors? Use Inequality (4) and the two lower bounds from Inequalities

(1) and (2) to derive your answer.

2 Analysis of multithreaded algorithms

We now turn to the design and analysis of multithreaded algorithms. Because of the divide-

and-conquer nature of the multithreaded model, recurrences are a natural way to express the

work and critical-path length of a multithreaded algorithm. We shall investigate algorithms

for matrix multiplication and sorting and analyze their performance.

2.1 Parallel Matrix Multiplication

To multiply two n�n matrices A and B in parallel to produce a matrix C, we can recursively

formulate the problem as follows:

C

11

C

12

C

21

C

22

!

=

A

11

A

12

A

21

A

22

!

�

B

11

B

12

B

21

B

22

!

=

A

11

B

11

+ A

12

B

21

A

11

B

12

+ A

12

B

22

A

21

B

11

+ A

22

B

21

A

21

B

12

+ A

22

B

22

!

:

Thus, each n�n matrix multiplication can be expressed as 8 multiplications and 4 additions

of (n=2) � (n=2) submatrices. The multithreaded procedure Mult multiplies two n � n

matrices, where n is a power of 2, using an auxiliary procedure Add to add n� n matrices.

This algorithm is not in-place.

Add(C; T; n)

1 if n = 1

2 then C[1; 1] C[1; 1] + T [1; 1]

3 else partition C and T into (n=2)� (n=2) submatrices

4 spawn Add(C

11

; T

11

; n=2)

5 spawn Add(C

12

; T

12

; n=2)

6 spawn Add(C

21

; T

21

; n=2)

7 spawn Add(C

22

; T

22

; n=2)

8 sync

6

Mult(C;A;B; n)

1 if n = 1

2 then C[1; 1] A[1; 1] �B[1; 1]

3 else allocate a temporary matrix T [1 : : n; 1 : : n]

4 partition A, B, C, and T into (n=2)� (n=2) submatrices

5 spawn Mult(C

11

; A

11

; B

11

; n=2)

6 spawn Mult(C

12

; A

11

; B

12

; n=2)

7 spawn Mult(C

21

; A

21

; B

11

; n=2)

8 spawn Mult(C

22

; A

21

; B

12

; n=2)

9 spawn Mult(T

11

; A

12

; B

21

; n=2)

10 spawn Mult(T

12

; A

12

; B

22

; n=2)

11 spawn Mult(T

21

; A

22

; B

21

; n=2)

12 spawn Mult(T

22

; A

22

; B

22

; n=2)

13 sync

14 spawn Add(C; T; n)

15 sync

The matrix partitionings in line 4 of Mult and line 3 of add take O(1) time, since only a

constant number of indexing operations are required.

To analyze this algorithm, let A

P

(n) be the P -processor running time of Add on n� n

matrices, and let M

P

(n) be the P -processor running time of Mult on n� n matrices. The

work (running time on one processor) for Add can be expressed by the recurrence

A

1

(n) = 4A

1

(n=2) + �(1)

= �(n

2

) ;

which is the same as for the ordinary double-nested-loop serial algorithm. Since the spawned

procedures can be executed in parallel, the critical-path length for Add is

A

1

(n) = A

1

(n=2) + �(1)

= �(lgn) :

The work for Mult can be expressed by the recurrence

M

1

(n) = 8M

1

(n=2) + A

1

(n)

= 8M

1

(n=2) + �(n

2

)

= �(n

3

) ;

which is the same as for the ordinary triple-nested-loop serial algorithm. The critical-path

length for Mult is

M

1

(n) = M

1

(n=2) + �(lgn)

= �(lg

2

n) :

7

Thus, the parallelism for Mult is M

1

(n)=M

1

(n) = �(n

3

= lg

2

n), which is quite high. To

multiply 1000 � 1000 matrices, for example, the parallelism is (ignoring constants) about

1000

3

=10

2

= 10

7

. Most parallel computers have far fewer processors.

To achieve high performance, it is often advantageous for an algorithm to use less space,

because more space usually means more time. For the matrix-multiplication problem, we

can eliminate the temporary matrix T in exchange for reducing the parallelism. Our new

algorithmMult-Add performs C C +A �B using a similar divide-and-conquer strategy

to Mult.

Mult-Add(C;A;B; n)

1 if n = 1

2 then C[1; 1] C[1; 1] + A[1; 1] �B[1; 1]

3 else partition A, B, and C into (n=2)� (n=2) submatrices

4 spawn Mult-Add(C

11

; A

11

; B

11

; n=2)

5 spawn Mult-Add(C

12

; A

11

; B

12

; n=2)

6 spawn Mult-Add(C

21

; A

21

; B

11

; n=2)

7 spawn Mult-Add(C

22

; A

21

; B

12

; n=2)

8 sync

9 spawn Mult-Add(C

11

; A

12

; B

21

; n=2)

10 spawn Mult-Add(C

12

; A

12

; B

22

; n=2)

11 spawn Mult-Add(C

21

; A

22

; B

21

; n=2)

12 spawn Mult-Add(C

22

; A

22

; B

22

; n=2)

13 sync

Let MA

P

(n) be the P -processor running time of Mult-Add on n � n matrices. The

work for Mult-Add is MA

1

(n) = �(n

3

), following the same analysis as for Mult, but the

critical-path length is now

MA

1

(n) = 2MA

1

(n=2) + �(1)

= �(n) ;

since only 4 recursive calls can be executed in parallel.

Thus, the parallelism is MA

1

(n)=MA

1

(n) = �(n

2

). On 1000� 1000 matrices, for exam-

ple, the parallelism is (ignoring constants) still quite high: about 1000

2

= 10

6

. In practice,

this algorithm often runs somewhat faster than the �rst, since saving space often saves time

due to hierarchical memory.

8

A

B

� A[l=2] � A[l=2]

1

1

l

m

l=2

j + 1j

� A[l=2] � A[l=2]

?

Figure 2: Illustration of P-Merge. The median of array A is used to partition array B, and then

the lower portions of the two arrays are recursively merged, as, in parallel, are the upper portions.

2.2 Parallel Merge Sort

This section shows how to parallelize merge sort. We shall see the parallelism of the algorithm

depends on how well the merge subroutine can be parallelized.

The most straightforward way to parallelize merge sort is to run the recursion in parallel,

as is done in the following pseudocode:

Merge-Sort(A; p; r)

1 if p < r

2 then q b(p+ r)=2c

3 spawn Merge-Sort(A; p; q)

4 spawn Merge-Sort(A; q + 1; r)

5 sync

6 Merge(A; p; q; r)

The work of Merge-Sort on an array of n elements is

T

1

(n) = 2T

1

(n=2) + �(n)

= �(n lgn) ;

since the running time of Merge is �(n). Since the two recursive spawns operate in parallel,

the critical-path length of Merge-Sort is

T

1

(n) = T

1

(n=2) + �(n)

= �(n) :

Consequently, the parallelism of the algorithm is T

1

(n)=T

1

(n) = �(lgn), which is puny. The

obvious bottleneck is Merge.

The following pseudocode, which is illustrated in Figure 2, performs the merge in parallel.

9

P-Merge(A[1 : : l]; B[1 : :m]; C[1 : : n])

1 if m > l � without loss of generality, larger array should be �rst

2 then spawn P-Merge(B[1 : :m]; A[1 : : l]; C[1 : : n])

3 elseif n = 1

4 then C[1] A[1]

5 elseif l = 1 � and m = 1

6 then if A[1] � B[1]

7 then C[1] A[1]; C[2] B[1]

8 else C[1] B[1]; C[2] A[1]

9 else �nd j such that B[j] � A[l=2] � B[j + 1] using binary search

10 spawn P-Merge(A[1 : : (l=2)]; B[1 : : j]; C[1 : : (l=2 + j)])

11 spawn P-Merge(A[(l=2 + 1) : : l]; B[(j + 1) : :m]; C[(l=2 + j + 1) : : n])

12 sync

This merging algorithm �nds the median of the larger array and uses it to partition the

smaller array. Then, the lower portions of the two arrays are recursively merged, and in

parallel, so are the upper portions.

To analyze P-Merge, let PM

P

(n) be the P -processor time to merge two arrays A and

B having n = m + l elements in total. Without loss of generality, let A be the larger of the

two arrays, that is, assume l � m.

We'll analyze the critical-path length �rst. The binary search of B takes �(lgm) time,

which in the worst case is �(lgn). Since the two recursive spawns in lines 10 and 11 operate

in parallel, the worst-case critical-path length is �(lgn) plus the worst-case critical path-

length of the spawn operating on the larger subarrays. In the worst case, we must merge

half of A with all of B, in which case the recursive spawn operates on at most 3n=4 elements.

Thus, we have

PM

1

(n) � PM

1

(3n=4) + �(lgn)

= �(lg

2

n) :

To analyze the work of Merge, observe that although the two recursive spawns may

operate on di�erent numbers of elements, they always operate on n elements between them.

Let �n be the number of elements operated on by the �rst spawn, where � is a constant in

the range 1=4 � � � 3=4. Thus, the second spawn operates on (1 � �)n elements, and the

worst-case work satis�es the recurrence

PM

1

(n) = PM

1

(�n) + PM

1

((1� �)n) + �(lgn) : (5)

We shall show that PM

1

(n) = �(n) using the substitution method. (Actually, the Akra-

Bazzi method [2], if you know it, is simpler.) We assume inductively that PM

1

(n) � an �

b lgn for some constants a; b > 0. We have

PM

1

(n) � a�n� b lg(�n) + a(1� �)n� b lg((1� �)n) + �(lgn)

= an� b(lg(�n) + lg((1� �)n)) + �(lgn)

10

= an� b(lg� + lgn+ lg(1� �) + lgn) + �(lgn)

= an� b lgn� (b(lgn+ lg(�(1� �)))� �(lgn))

� an� b lgn ;

since we can choose b large enough so that b(lgn+lg(�(1��))) dominates �(lgn). Moreover,

we can pick a large enough to satisfy the base conditions. Thus, PM

1

(n) = �(n), which is

the same work asymptotically as the ordinary, serial merging algorithm.

We can now reanalyze the Merge-Sort using the P-Merge subroutine. The work

T

1

(n) remains the same, but the worst-case critical-path length now satis�es

T

1

(n) = T

1

(n=2) + �(lg

2

n)

= �(lg

3

n) :

The parallelism is now �(n lgn)=�(lg

3

n) = �(n= lg

2

n).

Exercise 2-1. Give an e�cient and highly parallel multithreaded algorithm for multiply-

ing an n � n matrix A by a length-n vector x that achieves work �(n

2

) and critical path

�(lgn). Analyze the work and critical-path length of your implementation, and give the

parallelism.

Exercise 2-2. Describe a multithreaded algorithm for matrix multiplication that achieves

work �(n

3

) and critical path �(lgn). Comment informally on the locality displayed by your

algorithm in the ideal cache model as compared with the two algorithms from this section.

Exercise 2-3. Write a Cilk program to multiply an n

1

� n

2

matrix by an n

2

� n

3

matrix

in parallel. Analyze the work, critical-path length, and parallelism of your implementation.

Your algorithm should be e�cient even if any of n

1

, n

2

, and n

3

are 1.

Exercise 2-4. Write a Cilk program to implement Strassen's matrix multiplication al-

gorithm in parallel as e�ciently as you can. Analyze the work, critical-path length, and

parallelism of your implementation.

Exercise 2-5. Write a Cilk program to invert a symmetric and positive-de�nite matrix

in parallel. (Hint: Use a divide-and-conquer approach based on the ideas of Theorem 31.12

from [8].)

Exercise 2-6. Akl and Santoro [1] have proposed a merging algorithm in which the �rst

step is to �nd the median of all the elements in the two sorted input arrays (as opposed to

the median of the elements in the larger subarray, as is done in P-Merge). Show that if the

total number of elements in the two arrays is n, this median can be found using �(lgn) time

on one processor in the worst case. Describe a linear-work multithreaded merging algorithm

based on this subroutine that has a parallelism of �(n= lg

2

n). Give and solve the recurrences

for work and critical-path length, and determine the parallelism. Implement your algorithm

as a Cilk program.

11

Exercise 2-7. Generalize the algorithm from Exercise Exercise 2-6 to �nd arbitrary order

statistics. Describe a merge-sorting algorithm with �(n lgn) work that achieves a parallelism

of �(n= lgn). (Hint: Merge many subarrays in parallel.)

Exercise 2-8. The length of a longest-common subsequence of two length-n sequences

x and y can be computed in parallel using a divide-and-conquer multithreaded algorithm.

Denote by c[i; j] the length of a longest common subsequence of x[1 : : i] and y[1 : : j]. First,

the multithreaded algorithm recursively computes c[i; j] for all i in the range 1 � i � n=2

and all j in the range 1 � j � n=2. Then, it recursively computes c[i; j] for 1 � i � n=2 and

n=2 < j � n, while in parallel recursively computing c[i; j] for n=2 < i � n and 1 � j � n=2.

Finally, it recursively computes c[i; j] for n=2 < i � n and n=2 < j � n. For the base

case, the algorithm computes c[i; j] in terms of c[i � 1; j � 1], c[i � 1; j], and c[i; j � 1] in

the ordinary way, since the logic of the algorithm guarantees that these three values have

already been computed.

That is, if the dynamic programming tableau is broken into four pieces

I II

III IV

!

;

then the recursive multithreaded code would look something like this:

spawn I

sync

spawn II

spawn III

sync

spawn IV

sync

Analyze the work, critical-path length, and parallelism of this algorithm. Describe and

analyze an algorithm that is asymptotically as e�cient (same work) but more parallel. Make

whatever interesting observations you can. Write an e�cient Cilk program for the problem.

References

[1] Selim G. Akl and Nicola Santoro. Optimal parallel merging and sorting without memory

con
icts. IEEE Transactions on Computers, C-36(11), November 1987.

[2] M. Akra and L. Bazzi. On the solution of linear recurrence equations. Computational

Optimization and Application, 10:195{210, 1998.

[3] Robert D. Blumofe. Executing Multithreaded Programs E�ciently. PhD thesis, De-

partment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, September 1995.

12

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system.

In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP), pages 207{216, Santa Barbara, California, July 1995.

[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations

by work stealing. In Proceedings of the 35th Annual Symposium on Foundations of

Computer Science (FOCS), pages 356{368, Santa Fe, New Mexico, November 1994.

[6] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of

the ACM, 21(2):201{206, April 1974.

[7] Cilk-5.2 (Beta 1) Reference Manual. Available on the Internet from

http://theory.lcs.mit.edu/

~

cilk.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. MIT Press and McGraw Hill, 1990.

[9] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the

Cilk-5 multithreaded language. In ACM SIGPLAN '98 Conference on Programming

Language Design and Implementation (PLDI), pages 212{223, Montreal, Canada, June

1998.

[10] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17(2):416{429, March 1969.

[11] Keith H. Randall. Cilk: E�cient Multithreaded Computing. PhD thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

May 1998.

13

