
I always loved that
word, Boolean.
Claude Shannon
IEEE Spectrum, April 1992
(Shannon’s master’s thesis showed
that the algebra invented by George
Boole in the 1800s could represent the
workings of electrical switches.)

The Basics of Logic
Design
B.1 Introduction B-3
B.2 Gates, Truth Tables, and Logic

Equations B-4
B.3 Combinational Logic B-9
B.4 Using a Hardware Description

Language B-20
B.5 Constructing a Basic Arithmetic Logic

Unit B-26
B.6 Faster Addition: Carry Lookahead B-38
B.7 Clocks B-48

B
A P P E N D I X

B.8 Memory Elements: Flip-Flops, Latches, and Registers B-50
B.9 Memory Elements: SRAMs and DRAMs B-58
B.10 Finite-State Machines B-67
B.11 Timing Methodologies B-72
B.12 Field Programmable Devices B-78
B.13 Concluding Remarks B-79
B.14 Exercises B-80

 B.1 Introduction

Th is appendix provides a brief discussion of the basics of logic design. It does not
replace a course in logic design, nor will it enable you to design signifi cant working
logic systems. If you have little or no exposure to logic design, however, this
appendix will provide suffi cient background to understand all the material in this
book. In addition, if you are looking to understand some of the motivation behind
how computers are implemented, this material will serve as a useful introduction.
If your curiosity is aroused but not sated by this appendix, the references at the end
provide several additional sources of information.

Section B.2 introduces the basic building blocks of logic, namely, gates. Section
B.3 uses these building blocks to construct simple combinational logic systems,
which contain no memory. If you have had some exposure to logic or digital
systems, you will probably be familiar with the material in these fi rst two sections.
Section B.5 shows how to use the concepts of Sections B.2 and B.3 to design an
ALU for the MIPS processor. Section B.6 shows how to make a fast adder, and

B-4 Appendix B The Basics of Logic Design

may be safely skipped if you are not interested in this topic. Section B.7 is a short
introduction to the topic of clocking, which is necessary to discuss how memory
elements work. Section B.8 introduces memory elements, and Section B.9 extends
it to focus on random access memories; it describes both the characteristics that
are important to understanding how they are used, as discussed in Chapter 4, and
the background that motivates many of the aspects of memory hierarchy design
discussed in Chapter 5. Section B.10 describes the design and use of fi nite-state
machines, which are sequential logic blocks. If you intend to read Appendix D,
you should thoroughly understand the material in Sections B.2 through B.10. If
you intend to read only the material on control in Chapter 4, you can skim the
appendices; however, you should have some familiarity with all the material except
Section B.11. Section B.11 is intended for those who want a deeper understanding
of clocking methodologies and timing. It explains the basics of how edge-triggered
clocking works, introduces another clocking scheme, and briefl y describes the
problem of synchronizing asynchronous inputs.

Th roughout this appendix, where it is appropriate, we also include segments
to demonstrate how logic can be represented in Verilog, which we introduce in
Section B.4. A more extensive and complete Verilog tutorial appears elsewhere on
the CD.

 B.2 Gates, Truth Tables, and Logic Equations

Th e electronics inside a modern computer are digital. Digital electronics operate
with only two voltage levels of interest: a high voltage and a low voltage. All other
voltage values are temporary and occur while transitioning between the values.
(As we discuss later in this section, a possible pitfall in digital design is sampling
a signal when it not clearly either high or low.) Th e fact that computers are digital
is also a key reason they use binary numbers, since a binary system matches the
underlying abstraction inherent in the electronics. In various logic families, the
values and relationships between the two voltage values diff er. Th us, rather than
refer to the voltage levels, we talk about signals that are (logically) true, or 1, or are
asserted; or signals that are (logically) false, or 0, or are deasserted. Th e values 0
and 1 are called complements or inverses of one another.

Logic blocks are categorized as one of two types, depending on whether they
contain memory. Blocks without memory are called combinational; the output of
a combinational block depends only on the current input. In blocks with memory,
the outputs can depend on both the inputs and the value stored in memory, which
is called the state of the logic block. In this section and the next, we will focus

asserted signal A signal
that is (logically) true,
or 1.

deasserted signal
A signal that is (logically)
false, or 0.

 B.2 Gates, Truth Tables, and Logical Equations B-5

only on combinational logic. Aft er introducing diff erent memory elements in
Section B.8, we will describe how sequential logic, which is logic including state,
is designed.

Truth Tables
Because a combinational logic block contains no memory, it can be completely
specifi ed by defi ning the values of the outputs for each possible set of input values.
Such a description is normally given as a truth table. For a logic block with n
inputs, there are 2n entries in the truth table, since there are that many possible
combinations of input values. Each entry specifi es the value of all the outputs for
that particular input combination.

Truth Tables

Consider a logic function with three inputs, A, B, and C, and three outputs, D,
E, and F. Th e function is defi ned as follows: D is true if at least one input is true,
E is true if exactly two inputs are true, and F is true only if all three inputs are
true. Show the truth table for this function.

Th e truth table will contain 23 � 8 entries. Here it is:
Inpu

Inputs Outputs

A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Truth tables can completely describe any combinational logic function; however,
they grow in size quickly and may not be easy to understand. Sometimes we want
to construct a logic function that will be 0 for many input combinations, and we
use a shorthand of specifying only the truth table entries for the nonzero outputs.
Th is approach is used in Chapter 4 and Appendix D.

combinational logic
A logic system whose
blocks do not contain
memory and hence
compute the same output
given the same input.

sequential logic
A group of logic elements
that contain memory
and hence whose value
depends on the inputs
as well as the current
contents of the memory.

EXAMPLE

ANSWER

B-6 Appendix B The Basics of Logic Design

Boolean Algebra
Another approach is to express the logic function with logic equations. Th is
is done with the use of Boolean algebra (named aft er Boole, a 19th-century
mathematician). In Boolean algebra, all the variables have the values 0 or 1 and, in
typical formulations, there are three operators:

■ Th e OR operator is written as �, as in A � B. Th e result of an OR operator is
1 if either of the variables is 1. Th e OR operation is also called a logical sum,
since its result is 1 if either operand is 1.

■ Th e AND operator is written as � , as in A � B. Th e result of an AND operator
is 1 only if both inputs are 1. Th e AND operator is also called logical product,
since its result is 1 only if both operands are 1.

■ Th e unary operator NOT is written as A. Th e result of a NOT operator is 1 only if
the input is 0. Applying the operator NOT to a logical value results in an inversion
or negation of the value (i.e., if the input is 0 the output is 1, and vice versa).

Th ere are several laws of Boolean algebra that are helpful in manipulating logic
equations.

■ Identity law: A � 0 � A and A � 1 � A

■ Zero and One laws: A � 1 � 1 and A � 0 � 0

■ Inverse laws: A A 1 and A A 0

■ Commutative laws: A � B � B � A and A � B � B � A

■ Associative laws: A � (B � C) � (A � B) � C and A � (B � C) � (A � B) � C

■ Distributive laws: A � (B � C) � (A � B) � (A � C) and
A � (B � C) � (A � B) � (A � C)

In addition, there are two other useful theorems, called DeMorgan’s laws, that are
discussed in more depth in the exercises.

Any set of logic functions can be written as a series of equations with an output
on the left -hand side of each equation and a formula consisting of variables and the
three operators above on the right-hand side.

 B.2 Gates, Truth Tables, and Logical Equations B-7

Logic Equations

Show the logic equations for the logic functions, D, E, and F, described in the
previous example.

Here’s the equation for D:

D A B C
F is equally simple:

F A B C

E is a little tricky. Th ink of it in two parts: what must be true for E to be true
(two of the three inputs must be true), and what cannot be true (all three
cannot be true). Th us we can write E as

E A B A C B C A B C(() () ()) ()

We can also derive E by realizing that E is true only if exactly two of the inputs
are true. Th en we can write E as an OR of the three possible terms that have
two true inputs and one false input:

E A B C A C B B C A() () ()

Proving that these two expressions are equivalent is explored in the exercises.

In Verilog, we describe combinational logic whenever possible using the assign
statement, which is described beginning on page B-23. We can write a defi nition
for E using the Verilog exclusive-OR operator as assign E � (A ^ B ^ C) *
(A + B + C) * (A * B * C), which is yet another way to describe this function.
D and F have even simpler representations, which are just like the corresponding C
code: D � A | B | C and F � A & B & C.

EXAMPLE

ANSWER

B-8 Appendix B The Basics of Logic Design

Gates
Logic blocks are built from gates that implement basic logic functions. For example,
an AND gate implements the AND function, and an OR gate implements the OR
function. Since both AND and OR are commutative and associative, an AND or an
OR gate can have multiple inputs, with the output equal to the AND or OR of all
the inputs. Th e logical function NOT is implemented with an inverter that always
has a single input. Th e standard representation of these three logic building blocks
is shown in Figure B.2.1.

Rather than draw inverters explicitly, a common practice is to add “bubbles”
to the inputs or outputs of a gate to cause the logic value on that input line or
output line to be inverted. For example, Figure B.2.2 shows the logic diagram for
the function A B� , using explicit inverters on the left and bubbled inputs and
outputs on the right.

Any logical function can be constructed using AND gates, OR gates, and
inversion; several of the exercises give you the opportunity to try implementing
some common logic functions with gates. In the next section, we’ll see how an
implementation of any logic function can be constructed using this knowledge.

In fact, all logic functions can be constructed with only a single gate type, if that
gate is inverting. Th e two common inverting gates are called NOR and NAND and
correspond to inverted OR and AND gates, respectively. NOR and NAND gates are
called universal, since any logic function can be built using this one gate type. Th e
exercises explore this concept further.

Are the following two logical expressions equivalent? If not, fi nd a setting of the
variables to show they are not:

■ () () ()A B C A C B B C A
■ B A C C A()

gate A device that
implements basic logic
functions, such as AND
or OR.

NOR gate An inverted
OR gate.

NAND gate An inverted
AND gate.

Check
Yourself

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from
left to right. Th e signals to the left of each symbol are the inputs, while the output appears on the right. Th e
AND and OR gates both have two inputs. Inverters have a single input.

A
B

A
B

FIGURE B.2.2 Logic gate implementation of A B� using explicit inverts on the left and
bubbled inputs and outputs on the right. Th is logic function can be simplifi ed to A B� or in Verilog,
A & ~ B.

 B.3 Combinational Logic B-9

 B.3 Combinational Logic

In this section, we look at a couple of larger logic building blocks that we use
heavily, and we discuss the design of structured logic that can be automatically
implemented from a logic equation or truth table by a translation program. Last,
we discuss the notion of an array of logic blocks.

Decoders
One logic block that we will use in building larger components is a decoder. Th e
most common type of decoder has an n-bit input and 2n outputs, where only one
output is asserted for each input combination. Th is decoder translates the n-bit
input into a signal that corresponds to the binary value of the n-bit input. Th e
outputs are thus usually numbered, say, Out0, Out1, … , Out2n � 1. If the value of
the input is i, then Outi will be true and all other outputs will be false. Figure B.3.1
shows a 3-bit decoder and the truth table. Th is decoder is called a 3-to-8 decoder
since there are 3 inputs and 8 (23) outputs. Th ere is also a logic element called
an encoder that performs the inverse function of a decoder, taking 2n inputs and
producing an n-bit output.

decoder A logic block
that has an n-bit input
and 2n outputs, where
only one output is
asserted for each input
combination.

stuptuOstupnI

12 11 10 Out7 Out6 Out5 Out4 Out3 Out2 Out1 Out0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

b. The truth table for a 3-bit decoder

Decoder
3

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

a. A 3-bit decoder

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 23 = 8 outputs, called Out0 to Out7. Only the
output corresponding to the binary value of the input is true, as shown in the truth table. Th e label 3 on the input to the decoder says that the
input signal is 3 bits wide.

B-10 Appendix B The Basics of Logic Design

Multiplexors
One basic logic function that we use quite oft en in Chapter 4 is the multiplexor.
A multiplexor might more properly be called a selector, since its output is one of
the inputs that is selected by a control. Consider the two-input multiplexor. Th e
left side of Figure B.3.2 shows this multiplexor has three inputs: two data values
and a selector (or control) value. Th e selector value determines which of the
inputs becomes the output. We can represent the logic function computed by a
two-input multiplexor, shown in gate form on the right side of Figure B.3.2, as
C A S B S() () .

Multiplexors can be created with an arbitrary number of data inputs. When
there are only two inputs, the selector is a single signal that selects one of the inputs
if it is true (1) and the other if it is false (0). If there are n data inputs, there will
need to be log2n⎡⎢ ⎤⎥ selector inputs. In this case, the multiplexor basically consists
of three parts:

1. A decoder that generates n signals, each indicating a diff erent input value

2. An array of n AND gates, each combining one of the inputs with a signal
from the decoder

3. A single large OR gate that incorporates the outputs of the AND gates

To associate the inputs with selector values, we oft en label the data inputs numerically
(i.e., 0, 1, 2, 3, …, n � 1) and interpret the data selector inputs as a binary number.
Sometimes, we make use of a multiplexor with undecoded selector signals.

Multiplexors are easily represented combinationally in Verilog by using if
expressions. For larger multiplexors, case statements are more convenient, but care
must be taken to synthesize combinational logic.

selector value Also
called control value. Th e
control signal that is used
to select one of the input
values of a multiplexor
as the output of the
multiplexor.

M
u
x

1

0

C

S

B

A
A

B

S

C

FIGURE B.3.2 A two-input multiplexor on the left and its implementation with gates on
the right. Th e multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input
(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when
they are wider than two inputs. We show how to do this beginning on page B-23.

 B.3 Combinational Logic B-11

Two-Level Logic and PLAs
As pointed out in the previous section, any logic function can be implemented with
only AND, OR, and NOT functions. In fact, a much stronger result is true. Any logic
function can be written in a canonical form, where every input is either a true or
complemented variable and there are only two levels of gates—one being AND and
the other OR—with a possible inversion on the fi nal output. Such a representation
is called a two-level representation, and there are two forms, called sum of products
and product of sums. A sum-of-products representation is a logical sum (OR) of
products (terms using the AND operator); a product of sums is just the opposite.
In our earlier example, we had two equations for the output E:

E A B A C B C A B C(() () ()) ()
and

E A B C A C B B C A() () ()

Th is second equation is in a sum-of-products form: it has two levels of logic and the
only inversions are on individual variables. Th e fi rst equation has three levels of logic.

Elaboration: We can also write E as a product of sums:

E A B C A C B B C A() () ()

To derive this form, you need to use DeMorgan’s theorems, which are discussed in the
exercises.

In this text, we use the sum-of-products form. It is easy to see that any logic
function can be represented as a sum of products by constructing such a
representation from the truth table for the function. Each truth table entry for
which the function is true corresponds to a product term. Th e product term
consists of a logical product of all the inputs or the complements of the inputs,
depending on whether the entry in the truth table has a 0 or 1 corresponding to
this variable. Th e logic function is the logical sum of the product terms where the
function is true. Th is is more easily seen with an example.

sum of products A form
of logical representation
that employs a logical sum
(OR) of products (terms
joined using the AND
operator).

B-12 Appendix B The Basics of Logic Design

Sum of Products

Show the sum-of-products representation for the following truth table for D.

Inputs Outputs
A B C D

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Th ere are four product terms, since the function is true (1) for four diff erent
input combinations. Th ese are:

A B C
A B C
A B C
A B C

� �

� �

� �

� �

Th us, we can write the function for D as the sum of these terms:

D A B C A B C A B C A B C()()()()

Note that only those truth table entries for which the function is true generate
terms in the equation.

We can use this relationship between a truth table and a two-level representation
to generate a gate-level implementation of any set of logic functions. A set of logic
functions corresponds to a truth table with multiple output columns, as we saw in
the example on page B-5. Each output column represents a diff erent logic function,
which may be directly constructed from the truth table.

Th e sum-of-products representation corresponds to a common structured-logic
implementation called a programmable logic array (PLA). A PLA has a set of
inputs and corresponding input complements (which can be implemented with a
set of inverters), and two stages of logic. Th e fi rst stage is an array of AND gates that
form a set of product terms (sometimes called minterms); each product term can
consist of any of the inputs or their complements. Th e second stage is an array of
OR gates, each of which forms a logical sum of any number of the product terms.
Figure B.3.3 shows the basic form of a PLA.

EXAMPLE

ANSWER

programmable logic
array (PLA)
A structured-logic
element composed
of a set of inputs and
corresponding input
complements and two
stages of logic: the fi rst
generates product terms
of the inputs and input
complements, and the
second generates sum
terms of the product
terms. Hence, PLAs
implement logic functions
as a sum of products.

minterms Also called
product terms. A set
of logic inputs joined
by conjunction (AND
operations); the product
terms form the fi rst logic
stage of the programmable
logic array (PLA).

 B.3 Combinational Logic B-13

A PLA can directly implement the truth table of a set of logic functions with
multiple inputs and outputs. Since each entry where the output is true requires
a product term, there will be a corresponding row in the PLA. Each output
corresponds to a potential row of OR gates in the second stage. Th e number of OR
gates corresponds to the number of truth table entries for which the output is true.
Th e total size of a PLA, such as that shown in Figure B.3.3, is equal to the sum of the
size of the AND gate array (called the AND plane) and the size of the OR gate array
(called the OR plane). Looking at Figure B.3.3, we can see that the size of the AND
gate array is equal to the number of inputs times the number of diff erent product
terms, and the size of the OR gate array is the number of outputs times the number
of product terms.

A PLA has two characteristics that help make it an effi cient way to implement a
set of logic functions. First, only the truth table entries that produce a true value for
at least one output have any logic gates associated with them. Second, each diff erent
product term will have only one entry in the PLA, even if the product term is used
in multiple outputs. Let’s look at an example.

PLAs

Consider the set of logic functions defi ned in the example on page B-5. Show
a PLA implementation of this example for D, E, and F. EXAMPLE

AND gates

OR gates

Product terms

Outputs

Inputs

FIGURE B.3.3 The basic form of a PLA consists of an array of AND gates followed by an
array of OR gates. Each entry in the AND gate array is a product term consisting of any number of inputs or
inverted inputs. Each entry in the OR gate array is a sum term consisting of any number of these product terms.

B-14 Appendix B The Basics of Logic Design

Here is the truth table we constructed earlier:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 1 1 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 0 1

Since there are seven unique product terms with at least one true value in the
output section, there will be seven columns in the AND plane. Th e number of
rows in the AND plane is three (since there are three inputs), and there are also
three rows in the OR plane (since there are three outputs). Figure B.3.4 shows
the resulting PLA, with the product terms corresponding to the truth table
entries from top to bottom.

Rather than drawing all the gates, as we do in Figure B.3.4, designers oft en show
just the position of AND gates and OR gates. Dots are used on the intersection of a
product term signal line and an input line or an output line when a corresponding
AND gate or OR gate is required. Figure B.3.5 shows how the PLA of Figure B.3.4
would look when drawn in this way. Th e contents of a PLA are fi xed when the PLA
is created, although there are also forms of PLA-like structures, called PALs, that
can be programmed electronically when a designer is ready to use them.

ROMs
Another form of structured logic that can be used to implement a set of logic
functions is a read-only memory (ROM). A ROM is called a memory because it
has a set of locations that can be read; however, the contents of these locations are
fi xed, usually at the time the ROM is manufactured. Th ere are also programmable
ROMs (PROMs) that can be programmed electronically, when a designer knows
their contents. Th ere are also erasable PROMs; these devices require a slow erasure
process using ultraviolet light, and thus are used as read-only memories, except
during the design and debugging process.

A ROM has a set of input address lines and a set of outputs. Th e number of
addressable entries in the ROM determines the number of address lines: if the

ANSWER

read-only memory
(ROM) A memory
whose contents are
designated at creation
time, aft er which the
contents can only be read.
ROM is used as structured
logic to implement a
set of logic functions by
using the terms in the
logic functions as address
inputs and the outputs as
bits in each word of the
memory.

programmable ROM
(PROM) A form of
read-only memory that
can be pro grammed
when a designer knows its
contents.

 B.3 Combinational Logic B-15

ROM contains 2m addressable entries, called the height, then there are m input
lines. Th e number of bits in each addressable entry is equal to the number of output
bits and is sometimes called the width of the ROM. Th e total number of bits in the
ROM is equal to the height times the width. Th e height and width are sometimes
collectively referred to as the shape of the ROM.

A
B
C

E

F

Outputs
D

Inputs

FIGURE B.3.4 The PLA for implementing the logic function described in the example.

A ROM can encode a collection of logic functions directly from the truth table.
For example, if there are n functions with m inputs, we need a ROM with m address
lines (and 2m entries), with each entry being n bits wide. Th e entries in the input
portion of the truth table represent the addresses of the entries in the ROM, while
the contents of the output portion of the truth table constitute the contents of the
ROM. If the truth table is organized so that the sequence of entries in the input
portion constitutes a sequence of binary numbers (as have all the truth tables
we have shown so far), then the output portion gives the ROM contents in order
as well. In the example starting on page B-13, there were three inputs and three
outputs. Th is leads to a ROM with 23 � 8 entries, each 3 bits wide. Th e contents of
those entries in increasing order by address are directly given by the output portion
of the truth table that appears on page B-14.

ROMs and PLAs are closely related. A ROM is fully decoded: it contains a full
output word for every possible input combination. A PLA is only partially decoded.
Th is means that a ROM will always contain more entries. For the earlier truth table
on page B-14, the ROM contains entries for all eight possible inputs, whereas the
PLA contains only the seven active product terms. As the number of inputs grows,

B-16 Appendix B The Basics of Logic Design

the number of entries in the ROM grows exponentially. In contrast, for most real
logic functions, the number of product terms grows much more slowly (see the
examples in Appendix D). Th is diff erence makes PLAs generally more effi cient
for implementing combinational logic functions. ROMs have the advantage of
being able to implement any logic function with the matching number of inputs
and outputs. Th is advantage makes it easier to change the ROM contents if the logic
function changes, since the size of the ROM need not change.

In addition to ROMs and PLAs, modern logic synthesis systems will also
translate small blocks of combinational logic into a collection of gates that can
be placed and wired automatically. Although some small collections of gates are
usually not area effi cient, for small logic functions they have less overhead than the
rigid structure of a ROM and PLA and so are preferred.

For designing logic outside of a custom or semicustom integrated circuit, a common
choice is a fi eld programming device; we describe these devices in Section B.12.

A

B

C

Inputs

AND plane

OR plane

D

E

F

Outputs

FIGURE B.3.5 A PLA drawn using dots to indicate the components of the product terms
and sum terms in the array. Rather than use inverters on the gates, usually all the inputs are run the
width of the AND plane in both true and complement forms. A dot in the AND plane indicates that the
input, or its inverse, occurs in the product term. A dot in the OR plane indicates that the corresponding
product term appears in the corresponding output.

 B.3 Combinational Logic B-17

Don’t Cares
Oft en in implementing some combinational logic, there are situations where we do
not care what the value of some output is, either because another output is true or
because a subset of the input combinations determines the values of the outputs.
Such situations are referred to as don’t cares. Don’t cares are important because they
make it easier to optimize the implementation of a logic function.

Th ere are two types of don’t cares: output don’t cares and input don’t cares, both
of which can be represented in a truth table. Output don’t cares arise when we don’t
care about the value of an output for some input combination. Th ey appear as Xs in
the output portion of a truth table. When an output is a don’t care for some input
combination, the designer or logic optimization program is free to make the output
true or false for that input combination. Input don’t cares arise when an output
depends on only some of the inputs, and they are also shown as Xs, though in the
input portion of the truth table.

Don’t Cares

Consider a logic function with inputs A, B, and C defi ned as follows:
■ If A or C is true, then output D is true, whatever the value of B.
■ If A or B is true, then output E is true, whatever the value of C.
■ Output F is true if exactly one of the inputs is true, although we don’t care

about the value of F, whenever D and E are both true.

Show the full truth table for this function and the truth table using don’t cares.
How many product terms are required in a PLA for each of these?

Here’s the full truth table, without don’t cares:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 0

1 0 0 1 1 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 1 1 0

EXAMPLE

ANSWER

B-18 Appendix B The Basics of Logic Design

Th is requires seven product terms without optimization. Th e truth table
written with output don’t cares looks like this:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

0 1 1 1 1 X

1 0 0 1 1 X

1 0 1 1 1 X

1 1 0 1 1 X

1 1 1 1 1 X

If we also use the input don’t cares, this truth table can be further simplifi ed
to yield the following:

Inputs Outputs
A B C D E F

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 1

X 1 1 1 1 X

1 X X 1 1 X

Th is simplifi ed truth table requires a PLA with four minterms, or it can be
implemented in discrete gates with one two-input AND gate and three OR gates
(two with three inputs and one with two inputs). Th is compares to the original
truth table that had seven minterms and would have required four AND gates.

Logic minimization is critical to achieving effi cient implementations. One tool
useful for hand minimization of random logic is Karnaugh maps. Karnaugh maps
represent the truth table graphically, so that product terms that may be combined
are easily seen. Nevertheless, hand optimization of signifi cant logic functions
using Karnaugh maps is impractical, both because of the size of the maps and their
complexity. Fortunately, the process of logic minimization is highly mechanical and
can be performed by design tools. In the process of minimization, the tools take
advantage of the don’t cares, so specifying them is important. Th e text book references
at the end of this appendix provide further discussion on logic minimization,
Karnaugh maps, and the theory behind such minimization algorithms.

Arrays of Logic Elements
Many of the combinational operations to be performed on data have to be done
to an entire word (32 bits) of data. Th us we oft en want to build an array of logic

 B.4 Using a Hardware Description Language B-19

elements, which we can represent simply by showing that a given operation will
happen to an entire collection of inputs. Inside a machine, much of the time we
want to select between a pair of buses. A bus is a collection of data lines that is
treated together as a single logical signal. (Th e term bus is also used to indicate a
shared collection of lines with multiple sources and uses.)

For example, in the MIPS instruction set, the result of an instruction that is written
into a register can come from one of two sources. A multiplexor is used to choose
which of the two buses (each 32 bits wide) will be written into the Result register.
Th e 1-bit multiplexor, which we showed earlier, will need to be replicated 32 times.

We indicate that a signal is a bus rather than a single 1-bit line by showing it with
a thicker line in a fi gure. Most buses are 32 bits wide; those that are not are explicitly
labeled with their width. When we show a logic unit whose inputs and outputs are
buses, this means that the unit must be replicated a suffi cient number of times to
accommodate the width of the input. Figure B.3.6 shows how we draw a multiplexor
that selects between a pair of 32-bit buses and how this expands in terms of 1-bit-
wide multiplexors. Sometimes we need to construct an array of logic elements
where the inputs for some elements in the array are outputs from earlier elements.
For example, this is how a multibit-wide ALU is constructed. In such cases, we must
explicitly show how to create wider arrays, since the individual elements of the array
are no longer independent, as they are in the case of a 32-bit-wide multiplexor.

bus In logic design, a
collection of data lines
that is treated together
as a single logical signal;
also, a shared collection
of lines with multiple
sources and uses.

M
u
x

C

Select

32

32

32

B

A
M
u
x

Select

B31

A31

C31

M
u
x

B30

A30

C30

M
u
x

B0

A0

C0

...

...

a. A 32-bit wide 2-to-1 multiplexor b. The 32-bit wide multiplexor is actually
an array of 32 1-bit multiplexors

FIGURE B.3.6 A multiplexor is arrayed 32 times to perform a selection between two 32-
bit inputs. Note that there is still only one data selection signal used for all 32 1-bit multiplexors.

B-20 Appendix B The Basics of Logic Design

Parity is a function in which the output depends on the number of 1s in the input.
For an even parity function, the output is 1 if the input has an even number of ones.
Suppose a ROM is used to implement an even parity function with a 4-bit input.
Which of A, B, C, or D represents the contents of the ROM?

Address A B C D

0 0 1 0 1

1 0 1 1 0

2 0 1 0 1

3 0 1 1 0

4 0 1 0 1

5 0 1 1 0

6 0 1 0 1

7 0 1 1 0

8 1 0 0 1

9 1 0 1 0

10 1 0 0 1

11 1 0 1 0

12 1 0 0 1

13 1 0 1 0

14 1 0 0 1

15 1 0 1 0

 B.4 Using a Hardware Description Language

Today most digital design of processors and related hardware systems is done
using a hardware description language. Such a language serves two purposes.
First, it provides an abstract description of the hardware to simulate and debug the
design. Second, with the use of logic synthesis and hardware compilation tools, this
description can be compiled into the hardware implementation.

In this section, we introduce the hardware description language Verilog and
show how it can be used for combinational design. In the rest of the appendix,
we expand the use of Verilog to include design of sequential logic. In the optional
sections of Chapter 4 that appear online, we use Verilog to describe processor
implementations. In the optional section from Chapter 5 that appears online, we
use system Verilog to describe cache controller implementations. System Verilog
adds structures and some other useful features to Verilog.

Verilog is one of the two primary hardware description languages; the other
is VHDL. Verilog is somewhat more heavily used in industry and is based on C,
as opposed to VHDL, which is based on Ada. Th e reader generally familiar with
C will fi nd the basics of Verilog, which we use in this appendix, easy to follow.

Check
Yourself

hardware description
language
A programming language
for describing hardware,
used for generating
simulations of a hardware
design and also as input
to synthesis tools that can
generate actual hardware.

Verilog One of the two
most common hardware
description languages.

VHDL One of the two
most common hardware
description languages.

 B.4 Using a Hardware Description Language B-21

Readers already familiar with VHDL should fi nd the concepts simple, provided
they have been exposed to the syntax of C.

Verilog can specify both a behavioral and a structural defi nition of a digital
system. A behavioral specifi cation describes how a digital system functionally
operates. A structural specifi cation describes the detailed organization of a digital
system, usually using a hierarchical description. A structural specifi cation can be
used to describe a hardware system in terms of a hierarchy of basic elements such
as gates and switches. Th us, we could use Verilog to describe the exact contents of
the truth tables and datapath of the last section.

With the arrival of hardware synthesis tools, most designers now use Verilog
or VHDL to structurally describe only the datapath, relying on logic synthesis to
generate the control from a behavioral description. In addition, most CAD systems
provide extensive libraries of standardized parts, such as ALUs, multiplexors,
register fi les, memories, and programmable logic blocks, as well as basic gates.

Obtaining an acceptable result using libraries and logic synthesis requires that
the specifi cation be written with an eye toward the eventual synthesis and the
desired outcome. For our simple designs, this primarily means making clear what
we expect to be implemented in combinational logic and what we expect to require
sequential logic. In most of the examples we use in this section and the remainder
of this appendix, we have written the Verilog with the eventual synthesis in mind.

Datatypes and Operators in Verilog
Th ere are two primary datatypes in Verilog:

1. A wire specifi es a combinational signal.

2. A reg (register) holds a value, which can vary with time. A reg need not
necessarily correspond to an actual register in an implementation, although
it oft en will.

A register or wire, named X, that is 32 bits wide is declared as an array: reg
[31:0] X or wire [31:0] X, which also sets the index of 0 to designate the
least signifi cant bit of the register. Because we oft en want to access a subfi eld of a
register or wire, we can refer to a contiguous set of bits of a register or wire with the
notation [starting bit: ending bit], where both indices must be constant
values.

An array of registers is used for a structure like a register fi le or memory. Th us,
the declaration

reg [31:0] registerfile[0:31]

specifi es a variable registerfi le that is equivalent to a MIPS registerfi le, where
register 0 is the fi rst. When accessing an array, we can refer to a single element, as
in C, using the notation registerfile[regnum].

behavioral
specifi cation Describes
how a digital system
operates functionally.

structural
specifi cation Describes
how a digital system is
organized in terms of a
hierarchical connection of
elements.

hardware synthesis
tools Computer-aided
design soft ware that
can generate a gate-
level design based on
behavioral descriptions of
a digital system.

wire In Verilog, specifi es
a combinational signal.

reg In Verilog, a register.

B-22 Appendix B The Basics of Logic Design

Th e possible values for a register or wire in Verilog are

■ 0 or 1, representing logical false or true

■ X, representing unknown, the initial value given to all registers and to any
wire not connected to something

■ Z, representing the high-impedance state for tristate gates, which we will not
discuss in this appendix

Constant values can be specifi ed as decimal numbers as well as binary, octal, or
hexadecimal. We oft en want to say exactly how large a constant fi eld is in bits. Th is
is done by prefi xing the value with a decimal number specifying its size in bits. For
example:

■ 4’b0100 specifi es a 4-bit binary constant with the value 4, as does 4’d4.

■ - 8 ‘h4 specifi es an 8-bit constant with the value �4 (in two’s complement
representation)

Values can also be concatenated by placing them within { } separated by commas.
Th e notation {x{bitfield}} replicates bit field x times. For example:

■ {16{2’b01}} creates a 32-bit value with the pattern 0101 … 01.

■ {A[31:16],B[15:0]} creates a value whose upper 16 bits come from A
and whose lower 16 bits come from B.

Verilog provides the full set of unary and binary operators from C, including the
arithmetic operators (�, �, *. /), the logical operators (&, |, �), the comparison
operators (� �, !�, �, �, � �, � �), the shift operators (��, ��), and C’s
conditional operator (?, which is used in the form condition ? expr1 :expr2
and returns expr1 if the condition is true and expr2 if it is false). Verilog adds
a set of unary logic reduction operators (&, |, ^) that yield a single bit by applying
the logical operator to all the bits of an operand. For example, &A returns the value
obtained by ANDing all the bits of A together, and ̂ A returns the reduction obtained
by using exclusive OR on all the bits of A.

Which of the following defi ne exactly the same value?

l. 8’bimoooo
2. 8’hF0
3. 8’d240
4. {{4{1’b1}},{4{1’b0}}}
5. {4’b1,4’b0)

Check
Yourself

 B.4 Using a Hardware Description Language B-23

Structure of a Verilog Program
A Verilog program is structured as a set of modules, which may represent anything
from a collection of logic gates to a complete system. Modules are similar to classes
in C��, although not nearly as powerful. A module specifi es its input and output
ports, which describe the incoming and outgoing connections of a module. A
module may also declare additional variables. Th e body of a module consists of:

■ initial constructs, which can initialize reg variables

■ Continuous assignments, which defi ne only combinational logic

■ always constructs, which can defi ne either sequential or combinational
logic

■ Instances of other modules, which are used to implement the module being
defi ned

Representing Complex Combinational Logic in Verilog
A continuous assignment, which is indicated with the keyword assign, acts like
a combinational logic function: the output is continuously assigned the value, and
a change in the input values is refl ected immediately in the output value. Wires
may only be assigned values with continuous assignments. Using continuous
assignments, we can defi ne a module that implements a half-adder, as Figure B.4.1
shows.

Assign statements are one sure way to write Verilog that generates combinational
logic. For more complex structures, however, assign statements may be awkward or
tedious to use. It is also possible to use the always block of a module to describe
a combinational logic element, although care must be taken. Using an always
block allows the inclusion of Verilog control constructs, such as if-then-else, case
statements, for statements, and repeat statements, to be used. Th ese statements are
similar to those in C with small changes.

An always block specifi es an optional list of signals on which the block is
sensitive (in a list starting with @). Th e always block is re-evaluated if any of the

FIGURE B.4.1 A Verilog module that defi nes a half-adder using continuous assignments.

B-24 Appendix B The Basics of Logic Design

listed signals changes value; if the list is omitted, the always block is constantly re-
evaluated. When an always block is specifying combinational logic, the sensitivity
list should include all the input signals. If there are multiple Verilog statements to
be executed in an always block, they are surrounded by the keywords begin and
end, which take the place of the { and } in C. An always block thus looks like this:

always @(list of signals that cause reevaluation) begin
Verilog statements including assignments and other

control statements end

Reg variables may only be assigned inside an always block, using a procedural
assignment statement (as distinguished from continuous assignment we saw
earlier). Th ere are, however, two diff erent types of procedural assignments. Th e
assignment operator � executes as it does in C; the right-hand side is evaluated,
and the left -hand side is assigned the value. Furthermore, it executes like the
normal C assignment statement: that is, it is completed before the next statement is
executed. Hence, the assignment operator � has the name blocking assignment.
Th is blocking can be useful in the generation of sequential logic, and we will return
to it shortly. Th e other form of assignment (nonblocking) is indicated by <=. In
nonblocking assignment, all right-hand sides of the assignments in an always
group are evaluated and the assignments are done simultaneously. As a fi rst
example of combinational logic implemented using an always block, Figure B.4.2
shows the implementation of a 4-to-1 multiplexor, which uses a case construct to
make it easy to write. Th e case construct looks like a C switch statement. Figure
B.4.3 shows a defi nition of a MIPS ALU, which also uses a case statement.

Since only reg variables may be assigned inside always blocks, when we want to
describe combinational logic using an always block, care must be taken to ensure
that the reg does not synthesize into a register. A variety of pitfalls are described in
the elaboration below.

Elaboration: Continuous assignment statements always yield combinational logic,
but other Verilog structures, even when in always blocks, can yield unexpected results
during logic synthesis. The most common problem is creating sequential logic by
implying the existence of a latch or register, which results in an implementation that is
both slower and more costly than perhaps intended. To ensure that the logic that you
intend to be combinational is synthesized that way, make sure you do the following:

1. Place all combinational logic in a continuous assignment or an always block.

2. Make sure that all the signals used as inputs appear in the sensitivity list of an
always block.

3. Ensure that every path through an always block assigns a value to the exact
same set of bits.

The last of these is the easiest to overlook; read through the example in Figure
B.5.15 to convince yourself that this property is adhered to.

sensitivity list Th e list of
signals that specifi es when
an always block should
be re-evaluated.

blocking assignment
In Verilog, an assignment
that completes before
the execution of the next
statement.

nonblocking
assignment An
assignment that continues
aft er evaluating the right-
hand side, assigning the
left -hand side the value
only aft er all right-hand
sides are evaluated.

 B.5 Constructing a Basic Arithmetic Logic Unit B-25

FIGURE B.4.3 A Verilog behavioral defi nition of a MIPS ALU. Th is could be synthesized using a module library containing basic
arithmetic and logical operations.

FIGURE B.4.2 A Verilog defi nition of a 4-to-1 multiplexor with 32-bit inputs, using a case
statement. Th e case statement acts like a C switch statement, except that in Verilog only the code
associated with the selected case is executed (as if each case state had a break at the end) and there is no fall-
through to the next statement.

B-26 Appendix B The Basics of Logic Design

Assuming all values are initially zero, what are the values of A and B aft er executing
this Verilog code inside an always block?

C=1;
A <= C;
B = C;

 B.5 Constructing a Basic Arithmetic Logic
Unit

Th e arithmetic logic unit (ALU) is the brawn of the computer, the device that per-
forms the arithmetic operations like addition and subtraction or logical operations
like AND and OR. Th is section constructs an ALU from four hardware building
blocks (AND and OR gates, inverters, and multiplexors) and illustrates how
combinational logic works. In the next section, we will see how addition can be
sped up through more clever designs.

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let’s assume
that we will connect 32 1-bit ALUs to create the desired ALU. We’ll therefore start
by constructing a 1-bit ALU.

A 1-Bit ALU
Th e logical operations are easiest, because they map directly onto the hardware
components in Figure B.2.1.

Th e 1-bit logical unit for AND and OR looks like Figure B.5.1. Th e multiplexor
on the right then selects a AND b or a OR b, depending on whether the value
of Operation is 0 or 1. Th e line that controls the multiplexor is shown in color
to distinguish it from the lines containing data. Notice that we have renamed the
control and output lines of the multiplexor to give them names that refl ect the
function of the ALU.

Th e next function to include is addition. An adder must have two inputs for the
operands and a single-bit output for the sum. Th ere must be a second output to
pass on the carry, called CarryOut. Since the CarryOut from the neighbor adder
must be included as an input, we need a third input. Th is input is called CarryIn.
Figure B.5.2 shows the inputs and the outputs of a 1-bit adder. Since we know what
addition is supposed to do, we can specify the outputs of this “black box” based on
its inputs, as Figure B.5.3 demonstrates.

We can express the output functions CarryOut and Sum as logical equations,
and these equations can in turn be implemented with logic gates. Let’s do CarryOut.
Figure B.5.4 shows the values of the inputs when CarryOut is a 1.

We can turn this truth table into a logical equation:

CarryOut b CarryIn a CarryIn a b a b CarryIn() () () ()

Check
Yourself

ALU n. [Arthritic
Logic Unit or (rare)
Arithmetic Logic Unit]
A random-number
generator supplied
as standard with all
computer systems.
Stan Kelly-Bootle, Th e
Devil’s DP Dictionary,
1981

 B.1 Introduction B-27

Operation

1

0

Result

a

b

FIGURE B.5.1 The 1-bit logical unit for AND and OR.

CarryIn

Sum

CarryOut

a

b

+

FIGURE B.5.2 A 1-bit adder. Th is adder is called a full adder; it is also called a (3,2) adder because it has
3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2) adder or half-adder.

stuptuOstupnI

Commentsa b CarryIn CarryOut Sum

0 0 0 0 0 0 + 0 + 0 = 00two
0 0 1 0 1 0 + 0 + 1 = 01two
0 1 0 0 1 0 + 1 + 0 = 01two
0 1 1 1 0 0 + 1 + 1 = 10two

1 0 0 0 1 1 + 0 + 0 = 01two

1 0 1 1 0 1 + 0 + 1 = 10two

1 1 0 1 0 1 + 1 + 0 = 10two

1 1 1 1 1 1 + 1 + 1 = 11two

FIGURE B.5.3 Input and output specifi cation for a 1-bit adder.

B-28 Appendix B The Basics of Logic Design

If a � b � CarryIn is true, then all of the other three terms must also be true, so we
can leave out this last term corresponding to the fourth line of the table. We can
thus simplify the equation to

CarryOut b CarryIn a CarryIn a b() () ()

Figure B.5.5 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and one OR gate. Th e three AND gates correspond
exactly to the three parenthesized terms of the formula above for CarryOut, and
the OR gate sums the three terms.

Inputs

a b CarryIn

0 1 1

1 0 1

1 1 0

1 1 1

FIGURE B.5.4 Values of the inputs when CarryOut is a 1.

a

b

CarryIn

CarryOut

FIGURE B.5.5 Adder hardware for the CarryOut signal. Th e rest of the adder hardware is the logic
for the Sum output given in the equation on this page.

Th e Sum bit is set when exactly one input is 1 or when all three inputs are 1. Th e
Sum results in a complex Boolean equation (recall that a means NOT a):

Sum a b CarryIn a b CarryIn a b CarryIn a b CarryIn() () () ())

Th e drawing of the logic for the Sum bit in the adder black box is left as an exercise
for the reader.

 B.5 Constructing a Basic Arithmetic Logic Unit B-29

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition (see Figure B.5.5).

Figure B.5.6 shows a 1-bit ALU derived by combining the adder with the earlier
components. Sometimes designers also want the ALU to perform a few more
simple operations, such as generating 0. Th e easiest way to add an operation is to
expand the multiplexor controlled by the Operation line and, for this example, to
connect 0 directly to the new input of that expanded multiplexor.

A 32-Bit ALU
Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure B.5.7
shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the shores
of a quiet lake, a single carry out of the least signifi cant bit (Result0) can ripple all
the way through the adder, causing a carry out of the most signifi cant bit (Result31).
Hence, the adder created by directly linking the carries of 1-bit adders is called a
ripple carry adder. We’ll see a faster way to connect the 1-bit adders starting on
page B-38.

Subtraction is the same as adding the negative version of an operand, and this
is how adders perform subtraction. Recall that the shortcut for negating a two’s
complement number is to invert each bit (sometimes called the one’s complement)
and then add 1. To invert each bit, we simply add a 2:1 multiplexor that chooses
between b and b, as Figure B.5.8 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure B.5.7. Th e added
multiplexor gives the option of b or its inverted value, depending on Binvert, but

B-30 Appendix B The Basics of Logic Design

this is only one step in negating a two’s complement number. Notice that the least
signifi cant bit still has a CarryIn signal, even though it’s unnecessary for addition.
What happens if we set this CarryIn to 1 instead of 0? Th e adder will then calculate
a � b � 1. By selecting the inverted version of b, we get exactly what we want:

a b a b a b) a b1 1() (

Th e simplicity of the hardware design of a two’s complement adder helps explain
why two’s complement representation has become the universal standard for
integer computer arithmetic.

a0

Operation

CarryIn
ALU0

CarryOut
b0

CarryIn

a1 CarryIn
ALU1

CarryOut
b1

Result0

Result1

a2 CarryIn
ALU2

CarryOut
b2

a31 CarryIn
ALU31

b31

Result2

Result31

...
...

...

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less signifi cant bit is
connected to the CarryIn of the more signifi cant bit. Th is organization is called ripple carry.

 B.5 Constructing a Basic Arithmetic Logic Unit B-31

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

FIGURE B.5.8 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting b (Binvert � 1) and setting CarryIn to 1 in the least signifi cant bit of the ALU, we get two’s comple-
ment subtraction of b from a instead of addition of b to a.

A MIPS ALU also needs a NOR function. Instead of adding a separate gate
for NOR, we can reuse much of the hardware already in the ALU, like we did for
subtract. Th e insight comes from the following truth about NOR:

()a b a b

Th at is, NOT (a OR b) is equivalent to NOT a AND NOT b. Th is fact is called
DeMorgan’s theorem and is explored in the exercises in more depth.

Since we have AND and NOT b, we only need to add NOT a to the ALU. Figure
B.5.9 shows that change.

Tailoring the 32-Bit ALU to MIPS
Th ese four operations—add, subtract, AND, OR—are found in the ALU of almost
every computer, and the operations of most MIPS instructions can be performed
by this ALU. But the design of the ALU is incomplete.

One instruction that still needs support is the set on less than instruction (slt).
Recall that the operation produces 1 if rs � rt, and 0 otherwise. Consequently, slt
will set all but the least signifi cant bit to 0, with the least signifi cant bit set according to
the comparison. For the ALU to perform slt, we fi rst need to expand the three-input

B-32 Appendix B The Basics of Logic Design

multiplexor in Figure B.5.8 to add an input for the slt result. We call that new input
Less and use it only for slt.

Th e top drawing of Figure B.5.10 shows the new 1-bit ALU with the expanded
multiplexor. From the description of slt above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the least signifi cant bit for set on less
than instructions.

What happens if we subtract b from a? If the diff erence is negative, then a � b
since

() (()) ()a b a b b b
a b

0 0⇒
⇒

We want the least signifi cant bit of a set on less than operation to be a 1 if a � b;
that is, a 1 if a � b is negative and a 0 if it’s positive. Th is desired result corresponds
exactly to the sign bit values: 1 means negative and 0 means positive. Following this
line of argument, we need only connect the sign bit from the adder output to the
least signifi cant bit to get set on less than.

Unfortunately, the Result output from the most signifi cant ALU bit in the top of
Figure B.5.10 for the slt operation is not the output of the adder; the ALU output
for the slt operation is obviously the input value Less.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

FIGURE B.5.9 A 1-bit ALU that performs AND, OR, and addition on a and b or a and b. By
selecting a (Ainvert � 1) and b (Binvert � 1), we get a NOR b instead of a AND b.

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2�

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2�

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

FIGURE B.5.10 (Top) A 1-bit ALU that performs AND, OR, and addition on a and b or b , and
(bottom) a 1-bit ALU for the most signifi cant bit. Th e top drawing includes a direct input that is
connected to perform the set on less than operation (see Figure B.5.11); the bottom has a direct output from
the adder for the less than comparison called Set. (See Exercise B.24 at the end of this appendix to see how to
calculate overfl ow with fewer inputs.)

B-34 Appendix B The Basics of Logic Design

Th us, we need a new 1-bit ALU for the most signifi cant bit that has an extra
output bit: the adder output. Th e bottom drawing of Figure B.5.10 shows the
design, with this new adder output line called Set, and used only for slt. As long
as we need a special ALU for the most signifi cant bit, we added the overfl ow detec-
tion logic since it is also associated with that bit.

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top
of Figure B.5.10 and one 1-bit ALU in the bottom of that fi gure. Th e Less inputs are connected
to 0 except for the least signifi cant bit, which is connected to the Set output of the most signifi cant bit. If the
ALU performs a � b and we select the input 3 in the multiplexor in Figure B.5.10, then Result � 0 … 001 if
a � b, and Result � 0 … 000 otherwise.

 B.1 Introduction B-35

Alas, the test of less than is a little more complicated than just described because
of overfl ow, as we explore in the exercises. Figure B.5.11 shows the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn and
Binvert to 1. For adds or logical operations, we want both control lines to be 0. We
can therefore simplify control of the ALU by combining the CarryIn and Binvert to
a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support
conditional branch instructions. Th ese instructions branch either if two registers
are equal or if they are unequal. Th e easiest way to test equality with the ALU is to
subtract b from a and then test to see if the result is 0, since

()a b a b0 ⇒

Th us, if we add hardware to test if the result is 0, we can test for equality. Th e
simplest way is to OR all the outputs together and then send that signal through
an inverter:

Zero Result Result Result Result Result()31 30 2 1 0…

Figure B.5.12 shows the revised 32-bit ALU. We can think of the combination of
the 1-bit Ainvert line, the 1-bit Binvert line, and the 2-bit Operation lines as 4-bit
control lines for the ALU, telling it to perform add, subtract, AND, OR, or set on
less than. Figure B.5.13 shows the ALU control lines and the corresponding ALU
operation.

Finally, now that we have seen what is inside a 32-bit ALU, we will use the
universal symbol for a complete ALU, as shown in Figure B.5.14.

Defi ning the MIPS ALU in Verilog
Figure B.5.15 shows how a combinational MIPS ALU might be specifi ed in Verilog;
such a specifi cation would probably be compiled using a standard parts library that
provided an adder, which could be instantiated. For completeness, we show the
ALU control for MIPS in Figure B.5.16, which is used in Chapter 4, where we build
a Verilog version of the MIPS datapath.

Th e next question is, “How quickly can this ALU add two 32-bit operands?”
We can determine the a and b inputs, but the CarryIn input depends on the
operation in the adjacent 1-bit adder. If we trace all the way through the chain of
dependencies, we connect the most signifi cant bit to the least signifi cant bit, so
the most signifi cant bit of the sum must wait for the sequential evaluation of all 32
1-bit adders. Th is sequential chain reaction is too slow to be used in time-critical
hardware. Th e next section explores how to speed-up addition. Th is topic is not
crucial to understanding the rest of the appendix and may be skipped.

B-36 Appendix B The Basics of Logic Design

...

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Bnegate

...

Ainvert

0

0

0 Overflow

...

Set

CarryIn
...

...
Zero

FIGURE B.5.12 The fi nal 32-bit ALU. Th is adds a Zero detector to Figure B.5.11.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR

FIGURE B.5.13 The values of the three ALU control lines, Bnegate, and Operation, and the
corresponding ALU operations.

 B.5 Constructing a Basic Arithmetic Logic Unit B-37

ALU

a

ALU operation

b

CarryOut

Zero

Result

Overflow

FIGURE B.5.14 The symbol commonly used to represent an ALU, as shown in Figure
B.5.12. Th is symbol is also used to represent an adder, so it is normally labeled either with ALU or Adder.

FIGURE B.5.15 A Verilog behavioral defi nition of a MIPS ALU.

B-38 Appendix B The Basics of Logic Design

Suppose you wanted to add the operation NOT (a AND b), called NAND. How
could the ALU change to support it?

1. No change. You can calculate NAND quickly using the current ALU since
()a b a b and we already have NOT a, NOT b, and OR.

2. You must expand the big multiplexor to add another input, and then add
new logic to calculate NAND.

 B.6 Faster Addition: Carry Lookahead

Th e key to speeding up addition is determining the carry in to the high-order bits
sooner. Th ere are a variety of schemes to anticipate the carry so that the worst-
case scenario is a function of the log2 of the number of bits in the adder. Th ese
anticipatory signals are faster because they go through fewer gates in sequence, but
it takes many more gates to anticipate the proper carry.

A key to understanding fast-carry schemes is to remember that, unlike soft
ware, hardware executes in parallel whenever inputs change.

Fast Carry Using “Infi nite” Hardware
As we mentioned earlier, any equation can be represented in two levels of logic.
Since the only external inputs are the two operands and the CarryIn to the least

Check
Yourself

FIGURE B.5.16 The MIPS ALU control: a simple piece of combinational control logic.

 B.6 Faster Addition: Carry Lookahead B-39

signifi cant bit of the adder, in theory we could calculate the CarryIn values to all
the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit 1,
so the formula is

CarryIn b CarryIn a CarryIn a b12 1 1 1 1 1() () ()

Similarly, CarryIn1 is defi ned as

CarryIn b CarryIn a CarryIn a b1 0 0 0 0 0 0() () ()

Using the shorter and more traditional abbreviation of ci for CarryIni, we can
rewrite the formulas as

c b c a c a b
c b c a c a b
2 1 1 1 1 1 1
1 0 0 0 0 0 0

() () ()
() () ()

Substituting the defi nition of c1 for the fi rst equation results in this formula:

c a a b a a c a b c
b a b b a c

2 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0

() () ()
() () (() ()b b c a b1 0 0 1 1

You can imagine how the equation expands as we get to higher bits in the adder;
it grows rapidly with the number of bits. Th is complexity is refl ected in the cost of
the hardware for fast carry, making this simple scheme prohibitively expensive for
wide adders.

Fast Carry Using the First Level of Abstraction: Propagate
and Generate
Most fast-carry schemes limit the complexity of the equations to simplify the
hardware, while still making substantial speed improvements over ripple carry.
One such scheme is a carry-lookahead adder. In Chapter 1, we said computer
systems cope with complexity by using levels of abstraction. A carry-lookahead
adder relies on levels of abstraction in its implementation.

Let’s factor our original equation as a fi rst step:

c 1 b c a c a b
a b a b c

i i i i i i i
i i i i i

() () ()
() ()=

If we were to rewrite the equation for c2 using this formula, we would see some
repeated patterns:

c a b a b a b a b c2 1 1 1 1 0 0 0 0 0() () (() ())

Note the repeated appearance of (ai � bi) and (ai � bi) in the formula above. Th ese
two important factors are traditionally called generate (gi) and propagate (pi):

B-40 Appendix B The Basics of Logic Design

g a b
p a b

i i i
i i i

Using them to defi ne ci � 1, we get

c 1 g p ci i i i

To see where the signals get their names, suppose gi is 1. Th en

c 1 g p c 1 p c 1i i i i i i

Th at is, the adder generates a CarryOut (ci � 1) independent of the value of Car-
ryIn (ci). Now suppose that gi is 0 and pi is 1. Th en

c g p c 1 c ci i i i i i1 0

Th at is, the adder propagates CarryIn to a CarryOut. Putting the two together,
CarryIni � 1 is a 1 if either gi is 1 or both pi is 1 and CarryIni is 1.

As an analogy, imagine a row of dominoes set on edge. Th e end domino can be
tipped over by pushing one far away, provided there are no gaps between the two.
Similarly, a carry out can be made true by a generate far away, provided all the
propagates between them are true.

Relying on the defi nitions of propagate and generate as our fi rst level of
abstraction, we can express the CarryIn signals more economically. Let’s show it
for 4 bits:

c g p c
c g p g p p c
c g p g p p

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

()
() ()
() (gg p p p c

c g p g p p g p p p g
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ()

() () ()
(pp3 p2 p1 p c 0 0)

Th ese equations just represent common sense: CarryIni is a 1 if some earlier adder
generates a carry and all intermediary adders propagate a carry. Figure B.6.1 uses
plumbing to try to explain carry lookahead.

Even this simplifi ed form leads to large equations and, hence, considerable logic
even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction
First, we consider this 4-bit adder with its carry-lookahead logic as a single building
block. If we connect them in ripple carry fashion to form a 16-bit adder, the add
will be faster than the original with a little more hardware.

 B.6 Faster Addition: Carry Lookahead B-41

To go faster, we’ll need carry lookahead at a higher level. To perform carry look
ahead for 4-bit adders, we need to propagate and generate signals at this higher
level. Here they are for the four 4-bit adder blocks:

P p p p p
P p p p p
P p p p p
P p p p

0 3 2 1 0
1 7 6 5 4
2 11 10 9 8
3 15 14 13 p12

Th at is, the “super” propagate signal for the 4-bit abstraction (Pi) is true only if each
of the bits in the group will propagate a carry.

For the “super” generate signal (Gi), we care only if there is a carry out of the
most signifi cant bit of the 4-bit group. Th is obviously occurs if generate is true
for that most signifi cant bit; it also occurs if an earlier generate is true and all the
intermediate propagates, including that of the most signifi cant bit, are also true:

G g p g p p g p p p g
G g p g p p

0 3 3 2 3 2 1 3 2 1 0
1 7 7 6 7 6

() () ()
() (g p p p g

G g p g p p g p p
5 7 6 5 4

2 11 11 10 11 10 9 11 10
) ()

() () (pp g
G g p g p p g p p p g

9 8
3 15 15 14 15 14 13 15 14 13 12

)
() () ()

Figure B.6.2 updates our plumbing analogy to show P0 and G0.
Th en the equations at this higher level of abstraction for the carry in for each

4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure B.6.3) are very similar to
the carry out equations for each bit of the 4-bit adder (c1, c2, c3, c4) on page B-40:

C G P c
C G P G P P c
C G P G P P

1 0 0 0
2 1 1 0 1 0 0
3 2 2 1 2 1

()
() ()
() (GG P P P c

C G P G P P G P P P G
0 2 1 0 0

4 3 3 2 3 2 1 3 2 1 0
) ()

() () ()
(()P P P P c3 2 1 0 0

Figure B.6.3 shows 4-bit adders connected with such a carry-lookahead unit.
Th e exercises explore the speed diff erences between these carry schemes, diff erent
notations for multibit propagate and generate signals, and the design of a 64-bit
adder.

B-42 Appendix B The Basics of Logic Design

c4

p3

p2

p1

p0

g3

g2

g1

g0

c0

c2

p1

p0

g1

g0

c0

c1

p0

g0

c0

FIGURE B.6.1 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using
water pipes and valves. Th e wrenches are turned to open and close valves. Water is shown in color. Th e
output of the pipe (ci � 1) will be full if either the nearest generate value (gi) is turned on or if the i propagate
value (pi) is on and there is water further upstream, either from an earlier generate or a propagate with water
behind it. CarryIn (c0) can result in a carry out without the help of any generates, but with the help of all
propagates.

 B.6 Faster Addition: Carry Lookahead B-43

G0

p3

p2

p1

g3

g2

g1

g0

P0
p3

p2

p1

p0

FIGURE B.6.2 A plumbing analogy for the next-level carry-lookahead signals P0 and G0.
P0 is open only if all four propagates (pi) are open, while water fl ows in G0 only if at least one generate (gi) is
open and all the propagates downstream from that generate are open.

B-44 Appendix B The Basics of Logic Design

Both Levels of the Propagate and Generate

Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a: 0001 1010 0011 0011two

b: 1110 0101 1110 1011two

Also, what is CarryOut15 (C4)?

Aligning the bits makes it easy to see the values of generate gi (ai � bi) and
propagate pi (ai � bi):

a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 0011
pi: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propagates:

P 1 1 1 1 1
P 1 1 1 1 1
P 1 1 1 1 1
P 1 1 1

3
2
1
0 0 0

Th e “super” generates are more complex, so use the following equations:

G g p g p p g p p p g0 3 3 2 3 2 1 3 2 1 0
0 1 0 1 0 1 1

() () ()
() () (= 00 1 1 0 0 0 0 0

1 7 7 6 7 6 5 7 6 5 4
0

)
() () ()G g p g p p g p p p g

(() () ()
() (

1 0 1 1 1 1 1 1 0 0 0 1 0 1
2 11 11 10 11 1G g p g p p 00 9 11 10 9 8

0 1 0 1 1 0 1 1 1 0 0 0 0 0 0
g p p p g) ()

() () ()
GG g p g p p g p p p g3 15 15 14 15 14 13 15 14 13 12

0 1 0
() () ()

() (() ()1 1 0 1 1 1 0 0 0 0 0 0

Finally, CarryOut15 is

C G P G P P G P P P G
P P P P c

4 3 3 2 3 2 1 3 2 1 0
3 2 1 0 0

0

() () ()
()

(() () () ()1 1 1 1 1 1 1 1 1 1
1 1

0 0 0 0
0 0 0 0

Hence, there is a carry out when adding these two 16-bit numbers.

EXAMPLE

ANSWER

 B.6 Faster Addition: Carry Lookahead B-45

a4 CarryIn

ALU1
 P1
 G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
 P0
 G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1
gi + 1

C1

Result4–7

a8 CarryIn

ALU2
 P2
 G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2
gi + 2

C2

Result8–11

a12 CarryIn

ALU3
 P3
 G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3
gi + 3

C3

Result12–15

ci + 4
C4

CarryOut

FIGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the
carries come from the carry-lookahead unit, not from the 4-bit ALUs.

B-46 Appendix B The Basics of Logic Design

Th e reason carry lookahead can make carries faster is that all logic begins
evaluating the moment the clock cycle begins, and the result will not change once
the output of each gate stops changing. By taking the shortcut of going through
fewer gates to send the carry in signal, the output of the gates will stop changing
sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the
relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

One simple way to model time for logic is to assume each AND or OR gate
takes the same time for a signal to pass through it. Time is estimated by simply
counting the number of gates along the path through a piece of logic. Compare
the number of gate delays for paths of two 16-bit adders, one using ripple carry
and one using two-level carry lookahead.

Figure B.5.5 on page B-28 shows that the carry out signal takes two gate
delays per bit. Th en the number of gate delays between a carry in to the least
signifi cant bit and the carry out of the most signifi cant is 16 � 2 � 32.

For carry lookahead, the carry out of the most signifi cant bit is just C4,
defi ned in the example. It takes two levels of logic to specify C4 in terms of
Pi and Gi (the OR of several AND terms). Pi is specifi ed in one level of logic
(AND) using pi, and Gi is specifi ed in two levels using pi and gi, so the worst
case for this next level of abstraction is two levels of logic. pi and gi are each
one level of logic, defi ned in terms of ai and bi. If we assume one gate delay
for each level of logic in these equations, the worst case is 2 � 2 � 1 � 5 gate
delays.

Hence, for the path from carry in to carry out, the 16-bit addition by a
carry-lookahead adder is six times faster, using this very simple estimate of
hardware speed.

Summary
Carry lookahead off ers a faster path than waiting for the carries to ripple through
all 32 1-bit adders. Th is faster path is paved by two signals, generate and propagate.

EXAMPLE

ANSWER

 B.6 Faster Addition: Carry Lookahead B-47

Th e former creates a carry regardless of the carry input, and the latter passes a carry
along. Carry lookahead also gives another example of how abstraction is important
in computer design to cope with complexity.

Using the simple estimate of hardware speed above with gate delays, what is the
relative performance of a ripple carry 8-bit add versus a 64-bit add using carry-
lookahead logic?

1. A 64-bit carry-lookahead adder is three times faster: 8-bit adds are 16 gate
delays and 64-bit adds are 7 gate delays.

2. Th ey are about the same speed, since 64-bit adds need more levels of logic in
the 16-bit adder.

3. 8-bit adds are faster than 64 bits, even with carry lookahead.

Elaboration: We have now accounted for all but one of the arithmetic and logical
operations for the core MIPS instruction set: the ALU in Figure B.5.14 omits support of
shift instructions. It would be possible to widen the ALU multiplexor to include a left shift
by 1 bit or a right shift by 1 bit. But hardware designers have created a circuit called a
barrel shifter, which can shift from 1 to 31 bits in no more time than it takes to add two
32-bit numbers, so shifting is normally done outside the ALU.

Elaboration: The logic equation for the Sum output of the full adder on page B-28 can
be expressed more simply by using a more powerful gate than AND and OR. An exclusive
OR gate is true if the two operands disagree; that is,

x y and x y≠ ⇒ ⇒1 0��

In some technologies, exclusive OR is more effi cient than two levels of AND and OR
gates. Using the symbol ⊕ to represent exclusive OR, here is the new equation:

Sum a b CarryIn� ⊕ ⊕

Also, we have drawn the ALU the traditional way, using gates. Computers are designed
today in CMOS transistors, which are basically switches. CMOS ALU and barrel shifters
take advantage of these switches and have many fewer multiplexors than shown in our
designs, but the design principles are similar.

Elaboration: Using lowercase and uppercase to distinguish the hierarchy of generate
and propagate symbols breaks down when you have more than two levels. An alternate
notation that scales is g

i..j
 and p

i..j
 for the generate and propagate signals for bits i to j.

Thus, g1..1 is generated for bit 1, g4..1 is for bits 4 to 1, and g16..1 is for bits 16 to 1.

Check
Yourself

B-48 Appendix B The Basics of Logic Design

 B.7 Clocks

Before we discuss memory elements and sequential logic, it is useful to discuss
briefl y the topic of clocks. Th is short section introduces the topic and is similar
to the discussion found in Section 4.2. More details on clocking and timing
methodologies are presented in Section B.11.

Clocks are needed in sequential logic to decide when an element that contains
state should be updated. A clock is simply a free-running signal with a fi xed cycle
time; the clock frequency is simply the inverse of the cycle time. As shown in Figure
B.7.1, the clock cycle time or clock period is divided into two portions: when the
clock is high and when the clock is low. In this text, we use only edge-triggered
clocking. Th is means that all state changes occur on a clock edge. We use an edge-
triggered methodology because it is simpler to explain. Depending on the tech-
nology, it may or may not be the best choice for a clocking methodology.

edge-triggered
clocking A clocking
scheme in which all state
changes occur on a clock
edge.

clocking methodology
Th e approach used to
determine when data is
valid and stable relative to
the clock.

Clock period Rising edge

Falling edge

FIGURE B.7.1 A clock signal oscillates between high and low values. Th e clock period is the
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and
causes state to be changed.

In an edge-triggered methodology, either the rising edge or the falling edge of
the clock is active and causes state changes to occur. As we will see in the next
section, the state elements in an edge-triggered design are implemented so that the
contents of the state elements only change on the active clock edge. Th e choice of
which edge is active is infl uenced by the implementation technology and does not
aff ect the concepts involved in designing the logic.

Th e clock edge acts as a sampling signal, causing the value of the data input to a
state element to be sampled and stored in the state element. Using an edge trigger
means that the sampling process is essentially instantaneous, eliminating problems
that could occur if signals were sampled at slightly diff erent times.

Th e major constraint in a clocked system, also called a synchronous system, is
that the signals that are written into state elements must be valid when the active

state element
A memory element.

synchronous system
A memory system that
employs clocks and where
data signals are read only
when the clock indicates
that the signal values are
stable.

 B.7 Clocks B-49

clock edge occurs. A signal is valid if it is stable (i.e., not changing), and the value
will not change again until the inputs change. Since combinational circuits cannot
have feedback, if the inputs to a combinational logic unit are not changed, the
outputs will eventually become valid.

Figure B.7.2 shows the relationship among the state elements and the
combinational logic blocks in a synchronous, sequential logic design. Th e state
elements, whose outputs change only aft er the clock edge, provide valid inputs
to the combinational logic block. To ensure that the values written into the state
elements on the active clock edge are valid, the clock must have a long enough
period so that all the signals in the combinational logic block stabilize, and then the
clock edge samples those values for storage in the state elements. Th is constraint
sets a lower bound on the length of the clock period, which must be long enough
for all state element inputs to be valid.

In the rest of this appendix, as well as in Chapter 4, we usually omit the clock
signal, since we are assuming that all state elements are updated on the same clock
edge. Some state elements will be written on every clock edge, while others will be
written only under certain conditions (such as a register being updated). In such
cases, we will have an explicit write signal for that state element. Th e write signal
must still be gated with the clock so that the update occurs only on the clock edge if
the write signal is active. We will see how this is done and used in the next section.

One other advantage of an edge-triggered methodology is that it is possible
to have a state element that is used as both an input and output to the same
combinational logic block, as shown in Figure B.7.3. In practice, care must be
taken to prevent races in such situations and to ensure that the clock period is long
enough; this topic is discussed further in Section B.11.

Now that we have discussed how clocking is used to update state elements, we
can discuss how to construct the state elements.

State
element

1

State
element

2
Combinational logic

Clock cycle

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and
the outputs are written into a state element. Th e clock edge determines when the contents of the
state elements are updated.

B-50 Appendix B The Basics of Logic Design

Elaboration: Occasionally, designers fi nd it useful to have a small number of state
elements that change on the opposite clock edge from the majority of the state elements.
Doing so requires extreme care, because such an approach has effects on both the
inputs and the outputs of the state element. Why then would designers ever do this?
Consider the case where the amount of combinational logic before and after a state
element is small enough so that each could operate in one-half clock cycle, rather than
the more usual full clock cycle. Then the state element can be written on the clock edge
corresponding to a half clock cycle, since the inputs and outputs will both be usable
after one-half clock cycle. One common place where this technique is used is in register

fi les, where simply reading or writing the register fi le can often be done in half the normal
clock cycle. Chapter 4 makes use of this idea to reduce the pipelining overhead.

 B.8 Memory Elements: Flip-Flops, Latches,
and Registers

In this section and the next, we discuss the basic principles behind memory
elements, starting with fl ip-fl ops and latches, moving on to register fi les, and
fi nishing with memories. All memory elements store state: the output from any
memory element depends both on the inputs and on the value that has been stored
inside the memory element. Th us all logic blocks containing a memory element
contain state and are sequential.

register fi le A state
element that consists
of a set of registers that
can be read and written
by supplying a register
number to be accessed.

State
element

Combinational logic

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to undetermined
data values. Of course, the clock cycle must still be long enough so that the input values are stable when
the active clock edge occurs.

R

S

Q

Q

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. Th e value
stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or
Q is asserted, Q will be deasserted and vice versa.

 B.8 Memory Elements: Flip-Flops, Latches, and Registers B-51

Th e simplest type of memory elements are unclocked; that is, they do not
have any clock input. Although we only use clocked memory elements in this
text, an unclocked latch is the simplest memory element, so let’s look at this
circuit fi rst. Figure B.8.1 shows an S-R latch (set-reset latch), built from a pair of
NOR gates (OR gates with inverted outputs). Th e outputs Q and Q represent the
value of the stored state and its complement. When neither S nor R are asserted,
the cross-coupled NOR gates act as inverters and store the previous values of
Q and Q.

For example, if the output, Q, is true, then the bottom inverter produces a false
output (which is Q), which becomes the input to the top inverter, which produces
a true output, which is Q, and so on. If S is asserted, then the output Q will be
asserted and Q will be deasserted, while if R is asserted, then the output Q will be
asserted and Q will be deasserted. When S and R are both deasserted, the last values
of Q and Q will continue to be stored in the cross-coupled structure. Asserting S
and R simultaneously can lead to incorrect operation: depending on how S and R
are deasserted, the latch may oscillate or become metastable (this is described in
more detail in Section B.11).

Th is cross-coupled structure is the basis for more complex memory elements
that allow us to store data signals. Th ese elements contain additional gates used to
store signal values and to cause the state to be updated only in conjunction with a
clock. Th e next section shows how these elements are built.

Flip-Flops and Latches
Flip-fl ops and latches are the simplest memory elements. In both fl ip-fl ops and
latches, the output is equal to the value of the stored state inside the element.
Furthermore, unlike the S-R latch described above, all the latches and fl ip-fl ops we
will use from this point on are clocked, which means that they have a clock input
and the change of state is triggered by that clock. Th e diff erence between a fl ip-
fl op and a latch is the point at which the clock causes the state to actually change.
In a clocked latch, the state is changed whenever the appropriate inputs change
and the clock is asserted, whereas in a fl ip-fl op, the state is changed only on a clock
edge. Since throughout this text we use an edge-triggered timing methodology
where state is only updated on clock edges, we need only use fl ip-fl ops. Flip-fl ops
are oft en built from latches, so we start by describing the operation of a simple
clocked latch and then discuss the operation of a fl ip-fl op constructed from that
latch.

For computer applications, the function of both fl ip-fl ops and latches is to
store a signal. A D latch or D fl ip-fl op stores the value of its data input signal in
the internal memory. Although there are many other types of latch and fl ip-fl op,
the D type is the only basic building block that we will need. A D latch has two
inputs and two outputs. Th e inputs are the data value to be stored (called D) and
a clock signal (called C) that indicates when the latch should read the value on
the D input and store it. Th e outputs are simply the value of the internal state (Q)

latch A memory element
in which the output is
equal to the value of the
stored state inside the
element and the state is
changed whenever the
appropriate inputs change
and the clock is asserted.

fl ip-fl op A memory
element for which the
output is equal to the
value of the stored state
inside the element and for
which the internal state is
changed only on a clock
edge.

D fl ip-fl op A fl ip-fl op
with one data input
that stores the value of
that input signal in the
internal memory when
the clock edge occurs.

B-52 Appendix B The Basics of Logic Design

and its complement (Q). When the clock input C is asserted, the latch is said to
be open, and the value of the output (Q) becomes the value of the input D. When
the clock input C is deasserted, the latch is said to be closed, and the value of the
output (Q) is whatever value was stored the last time the latch was open.

Figure B.8.2 shows how a D latch can be implemented with two additional gates
added to the cross-coupled NOR gates. Since when the latch is open the value of Q
changes as D changes, this structure is sometimes called a transparent latch. Figure
B.8.3 shows how this D latch works, assuming that the output Q is initially false and
that D changes fi rst.

As mentioned earlier, we use fl ip-fl ops as the basic building block, rather than
latches. Flip-fl ops are not transparent: their outputs change only on the clock edge.
A fl ip-fl op can be built so that it triggers on either the rising (positive) or falling
(negative) clock edge; for our designs we can use either type. Figure B.8.4 shows
how a falling-edge D fl ip-fl op is constructed from a pair of D latches. In a D fl ip-
fl op, the output is stored when the clock edge occurs. Figure B.8.5 shows how this
fl ip-fl op operates.

C

D

Q

Q

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other
input is 0. Th us, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is
asserted, in which case the value of input D replaces the value of Q and is stored. Th e value of input D must
be stable when the clock signal C changes from asserted to deasserted.

D

C

Q

FIGURE B.8.3 Operation of a D latch, assuming the output is initially deasserted. When
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.

 B.8 Memory Elements: Flip-Flops, Latches, and Registers B-53

D

C

D
latch

D

C

Q
D

latch

D

C

Q Q

Q Q

FIGURE B.8.4 A D fl ip-fl op with a falling-edge trigger. Th e fi rst latch, called the master, is open
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the fi rst latch is
closed, but the second latch, called the slave, is open and gets its input from the output of the master latch.

Here is a Verilog description of a module for a rising-edge D fl ip-fl op, assuming
that C is the clock input and D is the data input:

module DFF(clock,D,Q,Qbar);
 input clock, D;

 output reg Q; // Q is a reg since it is assigned in an
always block

 output Qbar;
 assign Qbar = ~ Q; // Qbar is always just the inverse
of Q
 always @(posedge clock) // perform actions whenever the
clock rises

 Q = D;
endmodule

Because the D input is sampled on the clock edge, it must be valid for a period
of time immediately before and immediately aft er the clock edge. Th e minimum
time that the input must be valid before the clock edge is called the setup time; the

D

C

Q

FIGURE B.8.5 Operation of a D fl ip-fl op with a falling-edge trigger, assuming the output is
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores
the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a
clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when
C transitions.

setup time Th e
minimum time that the
input to a memory device
must be valid before the
clock edge.

B-54 Appendix B The Basics of Logic Design

minimum time during which it must be valid aft er the clock edge is called the hold
time. Th us the inputs to any fl ip-fl op (or anything built using fl ip-fl ops) must be valid
during a window that begins at time tsetup before the clock edge and ends at thold aft er
the clock edge, as shown in Figure B.8.6. Section B.11 talks about clocking and timing
constraints, including the propagation delay through a fl ip-fl op, in more detail.

We can use an array of D fl ip-fl ops to build a register that can hold a multibit
datum, such as a byte or word. We used registers throughout our datapaths in
Chapter 4.

Register Files
One structure that is central to our datapath is a register fi le. A register fi le consists
of a set of registers that can be read and written by supplying a register number
to be accessed. A register fi le can be implemented with a decoder for each read
or write port and an array of registers built from D fl ip-fl ops. Because reading a
register does not change any state, we need only supply a register number as an
input, and the only output will be the data contained in that register. For writing a
register we will need three inputs: a register number, the data to write, and a clock
that controls the writing into the register. In Chapter 4, we used a register fi le that
has two read ports and one write port. Th is register fi le is drawn as shown in Figure
B.8.7. Th e read ports can be implemented with a pair of multiplexors, each of which
is as wide as the number of bits in each register of the register fi le. Figure B.8.8
shows the implementation of two register read ports for a 32-bit-wide register fi le.

Implementing the write port is slightly more complex, since we can only change
the contents of the designated register. We can do this by using a decoder to generate
a signal that can be used to determine which register to write. Figure B.8.9 shows
how to implement the write port for a register fi le. It is important to remember that
the fl ip-fl op changes state only on the clock edge. In Chapter 4, we hooked up write
signals for the register fi le explicitly and assumed the clock shown in Figure B.8.9
is attached implicitly.

What happens if the same register is read and written during a clock cycle?
Because the write of the register fi le occurs on the clock edge, the register will be

D

C

Setup time Hold time

FIGURE B.8.6 Setup and hold time requirements for a D fl ip-fl op with a falling-edge trigger.
Th e input must be stable for a period of time before the clock edge, as well as aft er the clock edge. Th e
minimum time the signal must be stable before the clock edge is called the setup time, while the minimum
time the signal must be stable aft er the clock edge is called the hold time. Failure to meet these minimum
requirements can result in a situation where the output of the fl ip-fl op may not be predictable, as described
in Section B.11. Hold times are usually either 0 or very small and thus not a cause of worry.

hold time Th e minimum
time during which the
input must be valid aft er
the clock edge.

 B.8 Memory Elements: Flip-Flops, Latches, and Registers B-55

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

FIGURE B.8.7 A register fi le with two read ports and one write port has fi ve inputs and
two outputs. Th e control input Write is shown in color.

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

FIGURE B.8.8 The implementation of two read ports for a register fi le with n registers
can be done with a pair of n-to-1 multiplexors, each 32 bits wide. Th e register read number
signal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented.

B-56 Appendix B The Basics of Logic Design

valid during the time it is read, as we saw earlier in Figure B.7.2. Th e value returned
will be the value written in an earlier clock cycle. If we want a read to return the
value currently being written, additional logic in the register fi le or outside of it is
needed. Chapter 4 makes extensive use of such logic.

Specifying Sequential Logic in Verilog
To specify sequential logic in Verilog, we must understand how to generate a
clock, how to describe when a value is written into a register, and how to specify
sequential control. Let us start by specifying a clock. A clock is not a predefi ned
object in Verilog; instead, we generate a clock by using the Verilog notation #n
before a statement; this causes a delay of n simulation time steps before the execu-
tion of the statement. In most Verilog simulators, it is also possible to generate
a clock as an external input, allowing the user to specify at simulation time the
number of clock cycles during which to run a simulation.

Th e code in Figure B.8.10 implements a simple clock that is high or low for one
simulation unit and then switches state. We use the delay capability and blocking
assignment to implement the clock.

Write

0
1

n-to-2n

decoder

n – 2

n – 1

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

FIGURE B.8.9 The write port for a register fi le is implemented with a decoder that is
used with the write signal to generate the C input to the registers. All three inputs (the register
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct
data is written into the register fi le.

 B.8 Memory Elements: Flip-Flops, Latches, and Registers B-57

Next, we must be able to specify the operation of an edge-triggered register. In
Verilog, this is done by using the sensitivity list on an always block and specifying
as a trigger either the positive or negative edge of a binary variable with the
notation posedge or negedge, respectively. Hence, the following Verilog code
causes register A to be written with the value b at the positive edge clock:

FIGURE B.8.10 A specifi cation of a clock.

FIGURE B.8.11 A MIPS register fi le written in behavioral Verilog. Th is register fi le writes on
the rising clock edge.

Th roughout this chapter and the Verilog sections of Chapter 4, we will assume
a positive edge-triggered design. Figure B.8.11 shows a Verilog specifi cation of a
MIPS register fi le that assumes two reads and one write, with only the write being
clocked.

B-58 Appendix B The Basics of Logic Design

In the Verilog for the register fi le in Figure B.8.11, the output ports corresponding to
the registers being read are assigned using a continuous assignment, but the register
being written is assigned in an always block. Which of the following is the reason?

a. Th ere is no special reason. It was simply convenient.

b. Because Data1 and Data2 are output ports and WriteData is an input port.

c. Because reading is a combinational event, while writing is a sequential event.

 B.9 Memory Elements: SRAMs and DRAMs

Registers and register fi les provide the basic building blocks for small memories,
but larger amounts of memory are built using either SRAMs (static random
access memories) or DRAMs (dynamic random access memories). We fi rst discuss
SRAMs, which are somewhat simpler, and then turn to DRAMs.

SRAMs
SRAMs are simply integrated circuits that are memory arrays with (usually) a single
access port that can provide either a read or a write. SRAMs have a fi xed access
time to any datum, though the read and write access characteristics oft en diff er.
An SRAM chip has a specifi c confi guration in terms of the number of addressable
locations, as well as the width of each addressable location. For example, a 4M � 8
SRAM provides 4M entries, each of which is 8 bits wide. Th us it will have 22 address
lines (since 4M � 222), an 8-bit data output line, and an 8-bit single data input line.
As with ROMs, the number of addressable locations is oft en called the height, with
the number of bits per unit called the width. For a variety of technical reasons, the
newest and fastest SRAMs are typically available in narrow confi gurations: � 1 and
� 4. Figure B.9.1 shows the input and output signals for a 2M � 16 SRAM.

Check
Yourself

static random access
memory (SRAM)
A memory where data
is stored statically (as
in fl ip-fl ops) rather
than dynamically (as
in DRAM). SRAMs are
faster than DRAMs,
but less dense and more
expensive per bit.

SRAM
2M � 16

Dout[15–0]

Address
21

Din[15–0]
16

Chip select

Output enable

Write enable

16

FIGURE B.9.1 A 32K � 8 SRAM showing the 21 address lines (32K � 215) and 16 data
inputs, the 3 control lines, and the 16 data outputs.

 B.9 Memory Elements: SRAMs and DRAMs B-59

To initiate a read or write access, the Chip select signal must be made active.
For reads, we must also activate the Output enable signal that controls whether or
not the datum selected by the address is actually driven on the pins. Th e Output
enable is useful for connecting multiple memories to a single-output bus and using
Output enable to determine which memory drives the bus. Th e SRAM read access
time is usually specifi ed as the delay from the time that Output enable is true and
the address lines are valid until the time that the data is on the output lines. Typical
read access times for SRAMs in 2004 varied from about 2–4 ns for the fastest CMOS
parts, which tend to be somewhat smaller and narrower, to 8–20 ns for the typical
largest parts, which in 2004 had more than 32 million bits of data. Th e demand for
low-power SRAMs for consumer products and digital appliances has grown greatly
in the past fi ve years; these SRAMs have much lower stand-by and access power,
but usually are 5–10 times slower. Most recently, synchronous SRAMs—similar to
the synchronous DRAMs, which we discuss in the next section—have also been
developed.

For writes, we must supply the data to be written and the address, as well as
signals to cause the write to occur. When both the Write enable and Chip select are
true, the data on the data input lines is written into the cell specifi ed by the address.
Th ere are setup-time and hold-time requirements for the address and data lines,
just as there were for D fl ip-fl ops and latches. In addition, the Write enable signal
is not a clock edge but a pulse with a minimum width requirement. Th e time to
complete a write is specifi ed by the combination of the setup times, the hold times,
and the Write enable pulse width.

Large SRAMs cannot be built in the same way we build a register fi le because,
unlike a register fi le where a 32-to-1 multiplexor might be practical, the 64K-to-
1 multiplexor that would be needed for a 64K � 1 SRAM is totally impractical.
Rather than use a giant multiplexor, large memories are implemented with a shared
output line, called a bit line, which multiple memory cells in the memory array can
assert. To allow multiple sources to drive a single line, a three-state buff er (or tristate
buff er) is used. A three-state buff er has two inputs—a data signal and an Output
enable—and a single output, which is in one of three states: asserted, deasserted,
or high impedance. Th e output of a tristate buff er is equal to the data input signal,
either asserted or deasserted, if the Output enable is asserted, and is otherwise in a
high-impedance state that allows another three-state buff er whose Output enable is
asserted to determine the value of a shared output.

Figure B.9.2 shows a set of three-state buff ers wired to form a multiplexor with a
decoded input. It is critical that the Output enable of at most one of the three-state
buff ers be asserted; otherwise, the three-state buff ers may try to set the output line
diff erently. By using three-state buff ers in the individual cells of the SRAM, each
cell that corresponds to a particular output can share the same output line. Th e use
of a set of distributed three-state buff ers is a more effi cient implementation than a
large centralized multiplexor. Th e three-state buff ers are incorporated into the fl ip-
fl ops that form the basic cells of the SRAM. Figure B.9.3 shows how a small 4 � 2
SRAM might be built, using D latches with an input called Enable that controls the
three-state output.

B-60 Appendix B The Basics of Logic Design

Th e design in Figure B.9.3 eliminates the need for an enormous multiplexor;
however, it still requires a very large decoder and a correspondingly large number
of word lines. For example, in a 4M � 8 SRAM, we would need a 22-to-4M decoder
and 4M word lines (which are the lines used to enable the individual fl ip-fl ops)!
To circumvent this problem, large memories are organized as rectangular arrays
and use a two-step decoding process. Figure B.9.4 shows how a 4M � 8 SRAM
might be organized internally using a two-step decode. As we will see, the two-level
decoding process is quite important in understanding how DRAMs operate.

Recently we have seen the development of both synchronous SRAMs (SSRAMs)
and synchronous DRAMs (SDRAMs). Th e key capability provided by synchronous
RAMs is the ability to transfer a burst of data from a series of sequential addresses
within an array or row. Th e burst is defi ned by a starting address, supplied in the
usual fashion, and a burst length. Th e speed advantage of synchronous RAMs
comes from the ability to transfer the bits in the burst without having to specify
additional address bits. Instead, a clock is used to transfer the successive bits in the
burst. Th e elimination of the need to specify the address for the transfers within
the burst signifi cantly improves the rate for transferring the block of data. Because
of this capability, synchronous SRAMs and DRAMs are rapidly becoming the
RAMs of choice for building memory systems in computers. We discuss the use of
synchronous DRAMs in a memory system in more detail in the next section and
in Chapter 5.

Select 0

Data 0

Enable

OutIn

Select 1

Data 1

Enable

OutIn

Select 2

Data 2

Enable

OutIn

Select 3

Data 3

Enable

OutIn

Output

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four
Select inputs can be asserted. A three-state buff er with a deasserted Output enable has a high-impedance
output that allows a three-state buff er whose Output enable is asserted to drive the shared output line.

 B.9 Memory Elements: SRAMs and DRAMs B-61

latch

D

C

Enable

Q

D

0

2-to-4
decoder

Write enable

Din[1]

latch

D

C

Enable

Q

D

Din[1]

Dout[1] Dout[0]

latch

D

C

Enable

Q

D

1

latch

D

C

Enable

Q

D

latch

D

C

Enable

Q

D

2

latch

D

C

Enable

Q

D

latch

D

C

Enable

Q

D

3

latch

D

C

Enable

Q

D

Address

FIGURE B.9.3 The basic structure of a 4 � 2 SRAM consists of a decoder that selects which pair of cells to activate.
Th e activated cells use a three-state output connected to the vertical bit lines that supply the requested data. Th e address that selects the cell is
sent on one of a set of horizontal address lines, called word lines. For simplicity, the Output enable and Chip select signals have been omitted,
but they could easily be added with a few AND gates.

B-62 Appendix B The Basics of Logic Design

12 to
40

96
de

co
de

r

A
dd

re
ss

[2
1–

10
]

40
96

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

4K
 �

10
24

S
R

A
M

M
ux

D
ou

t7

M
ux

D
ou

t6

M
ux

D
ou

t5

M
ux

D
ou

t4

M
ux

D
ou

t3

M
ux

D
ou

t2

M
ux

D
ou

t1

M
ux

D
ou

t0

10
24

A
dd

re
ss

[9
–0

]

FI
G

U
R

E
 B

.9
.4

Ty

pi
ca

l
o

rg
an

iz
at

io
n

o
f

a
4
M

 �
 8

 S
R

A
M

 a
s

an
 a

rr
ay

 o
f

4
K

 �
 1

0
2
4
 a

rr
ay

s.
 Th

 e
 fi

rs
t d

ec
od

er
 g

en
er

at
es

 th
e

ad
dr

es
se

s f
or

 e
ig

ht
 4

K
�

 1
02

4
ar

ra
ys

; t
he

n
a

se
t o

f m
ul

tip
le

xo
rs

 is
 u

se
d

to
 se

le
ct

 1
 b

it
fro

m
 e

ac
h

10
24

-b
it-

w
id

e
ar

ra
y.

Th
is

is
a

m
uc

h
ea

sie
r

de
sig

n
th

an
 a

 si
ng

le
-le

ve
l d

ec
od

e t
ha

t w
ou

ld
 n

ee
d

ei
th

er
 an

 en
or

m
ou

s d
ec

od
er

 o
r a

 g
ig

an
tic

 m
ul

tip
le

xo
r.

In
 p

ra
ct

ic
e,

a
m

od
er

n
SR

A
M

 o
f t

hi
s

siz
e w

ou
ld

 p
ro

ba
bl

y
us

e a
n

ev
en

 la
rg

er
 n

um
be

r o
f b

lo
ck

s,
ea

ch
 so

m
ew

ha
t s

m
al

le
r.

 B.9 Memory Elements: SRAMs and DRAMs B-63

DRAMs
In a static RAM (SRAM), the value stored in a cell is kept on a pair of inverting gates,
and as long as power is applied, the value can be kept indefi nitely. In a dynamic
RAM (DRAM), the value kept in a cell is stored as a charge in a capacitor. A single
transistor is then used to access this stored charge, either to read the value or to
overwrite the charge stored there. Because DRAMs use only a single transistor per
bit of storage, they are much denser and cheaper per bit. By comparison, SRAMs
require four to six transistors per bit. Because DRAMs store the charge on a
capacitor, it cannot be kept indefi nitely and must periodically be refreshed. Th at is
why this memory structure is called dynamic, as opposed to the static storage in a
SRAM cell.

To refresh the cell, we merely read its contents and write it back. Th e charge can
be kept for several milliseconds, which might correspond to close to a million clock
cycles. Today, single-chip memory controllers oft en handle the refresh function
independently of the processor. If every bit had to be read out of the DRAM and
then written back individually, with large DRAMs containing multiple megabytes,
we would constantly be refreshing the DRAM, leaving no time for accessing it.
Fortunately, DRAMs also use a two-level decoding structure, and this allows us
to refresh an entire row (which shares a word line) with a read cycle followed
immediately by a write cycle. Typically, refresh operations consume 1% to 2% of
the active cycles of the DRAM, leaving the remaining 98% to 99% of the cycles
available for reading and writing data.

Elaboration: How does a DRAM read and write the signal stored in a cell? The
transistor inside the cell is a switch, called a pass transistor, that allows the value stored
on the capacitor to be accessed for either reading or writing. Figure B.9.5 shows how
the single-transistor cell looks. The pass transistor acts like a switch: when the signal
on the word line is asserted, the switch is closed, connecting the capacitor to the bit
line. If the operation is a write, then the value to be written is placed on the bit line. If
the value is a 1, the capacitor will be charged. If the value is a 0, then the capacitor will
be discharged. Reading is slightly more complex, since the DRAM must detect a very
small charge stored in the capacitor. Before activating the word line for a read, the bit
line is charged to the voltage that is halfway between the low and high voltage. Then, by
activating the word line, the charge on the capacitor is read out onto the bit line. This
causes the bit line to move slightly toward the high or low direction, and this change is
detected with a sense amplifi er, which can detect small changes in voltage.

B-64 Appendix B The Basics of Logic Design

Word line

Pass transistor

Capacitor

Bit line

FIGURE B.9.5 A single-transistor DRAM cell contains a capacitor that stores the cell
contents and a transistor used to access the cell.

Address[10–0]

Row
decoder

11-to-2048

2048 � 2048
array

Column latches

Mux

Dout

FIGURE B.9.6 A 4M � 1 DRAM is built with a 2048 � 2048 array. Th e row access uses 11 bits to
select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048
latches. Th e RAS and CAS signals control whether the address lines are sent to the row decoder or column
multiplexor.

 B.9 Memory Elements: SRAMs and DRAMs B-65

DRAMs use a two-level decoder consisting of a row access followed by a column
access, as shown in Figure B.9.6. Th e row access chooses one of a number of rows
and activates the corresponding word line. Th e contents of all the columns in the
active row are then stored in a set of latches. Th e column access then selects the
data from the column latches. To save pins and reduce the package cost, the same
address lines are used for both the row and column address; a pair of signals called
RAS (Row Access Strobe) and CAS (Column Access Strobe) are used to signal the
DRAM that either a row or column address is being supplied. Refresh is performed
by simply reading the columns into the column latches and then writing the same
values back. Th us, an entire row is refreshed in one cycle. Th e two-level addressing
scheme, combined with the internal circuitry, makes DRAM access times much
longer (by a factor of 5–10) than SRAM access times. In 2004, typical DRAM access
times ranged from 45 to 65 ns; 256 Mbit DRAMs are in full production, and the
fi rst customer samples of 1 GB DRAMs became available in the fi rst quarter of
2004. Th e much lower cost per bit makes DRAM the choice for main memory,
while the faster access time makes SRAM the choice for caches.

You might observe that a 64M � 4 DRAM actually accesses 8K bits on every
row access and then throws away all but 4 of those during a column access. DRAM
designers have used the internal structure of the DRAM as a way to provide
higher bandwidth out of a DRAM. Th is is done by allowing the column address to
change without changing the row address, resulting in an access to other bits in the
column latches. To make this process faster and more precise, the address inputs
were clocked, leading to the dominant form of DRAM in use today: synchronous
DRAM or SDRAM.

Since about 1999, SDRAMs have been the memory chip of choice for most
cache-based main memory systems. SDRAMs provide fast access to a series of bits
within a row by sequentially transferring all the bits in a burst under the control
of a clock signal. In 2004, DDRRAMs (Double Data Rate RAMs), which are called
double data rate because they transfer data on both the rising and falling edge of
an externally supplied clock, were the most heavily used form of SDRAMs. As we
discuss in Chapter 5, these high-speed transfers can be used to boost the bandwidth
available out of main memory to match the needs of the processor and caches.

Error Correction
Because of the potential for data corruption in large memories, most computer
systems use some sort of error-checking code to detect possible corruption of data.
One simple code that is heavily used is a parity code. In a parity code the number
of 1s in a word is counted; the word has odd parity if the number of 1s is odd and

B-66 Appendix B The Basics of Logic Design

even otherwise. When a word is written into memory, the parity bit is also written
(1 for odd, 0 for even). Th en, when the word is read out, the parity bit is read and
checked. If the parity of the memory word and the stored parity bit do not match,
an error has occurred.

A 1-bit parity scheme can detect at most 1 bit of error in a data item; if there
are 2 bits of error, then a 1-bit parity scheme will not detect any errors, since the
parity will match the data with two errors. (Actually, a 1-bit parity scheme can
detect any odd number of errors; however, the probability of having three errors is
much lower than the probability of having two, so, in practice, a 1-bit parity code is
limited to detecting a single bit of error.) Of course, a parity code cannot tell which
bit in a data item is in error.

A 1-bit parity scheme is an error detection code; there are also error correction
codes (ECC) that will detect and allow correction of an error. For large main
memories, many systems use a code that allows the detection of up to 2 bits of error
and the correction of a single bit of error. Th ese codes work by using more bits to
encode the data; for example, the typical codes used for main memories require 7
or 8 bits for every 128 bits of data.

Elaboration: A 1-bit parity code is a distance-2 code, which means that if we look
at the data plus the parity bit, no 1-bit change is suffi cient to generate another legal
combination of the data plus parity. For example, if we change a bit in the data, the parity
will be wrong, and vice versa. Of course, if we change 2 bits (any 2 data bits or 1 data
bit and the parity bit), the parity will match the data and the error cannot be detected.
Hence, there is a distance of two between legal combinations of parity and data.

To detect more than one error or correct an error, we need a distance-3 code, which
has the property that any legal combination of the bits in the error correction code and
the data has at least 3 bits differing from any other combination. Suppose we have such
a code and we have one error in the data. In that case, the code plus data will be one bit
away from a legal combination, and we can correct the data to that legal combination.
If we have two errors, we can recognize that there is an error, but we cannot correct
the errors. Let’s look at an example. Here are the data words and a distance-3 error
correction code for a 4-bit data item.

Data Word Code bits Data Code bits

0000 000 1000 111

0001 011 1001 100

0010 101 1010 010

0011 110 1011 001

0100 110 1100 001

0101 101 1101 010

0110 011 1110 100

0111 000 1111 111

error detection code
A code that enables the
detection of an error in
data, but not the precise
location and, hence,
correction of the error.

 B.10 Finite-State Machines B-67

To see how this works, let’s choose a data word, say 0110, whose error correction
code is 011. Here are the four 1-bit error possibilities for this data: 1110, 0010, 0100,
and 0111. Now look at the data item with the same code (011), which is the entry with
the value 0001. If the error correction decoder received one of the four possible data
words with an error, it would have to choose between correcting to 0110 or 0001. While
these four words with error have only one bit changed from the correct pattern of 0110,
they each have two bits that are different from the alternate correction of 0001. Hence,
the error correction mechanism can easily choose to correct to 0110, since a single
error is a much higher probability. To see that two errors can be detected, simply notice
that all the combinations with two bits changed have a different code. The one reuse of
the same code is with three bits different, but if we correct a 2-bit error, we will correct
to the wrong value, since the decoder will assume that only a single error has occurred.
If we want to correct 1-bit errors and detect, but not erroneously correct, 2-bit errors, we
need a distance-4 code.

Although we distinguished between the code and data in our explanation, in truth,
an error correction code treats the combination of code and data as a single word in
a larger code (7 bits in this example). Thus, it deals with errors in the code bits in the
same fashion as errors in the data bits.

While the above example requires n � 1 bits for n bits of data, the number of bits
required grows slowly, so that for a distance-3 code, a 64-bit word needs 7 bits and a
128-bit word needs 8. This type of code is called a Hamming code, after R. Hamming,
who described a method for creating such codes.

 B.10 Finite-State Machines

As we saw earlier, digital logic systems can be classifi ed as combinational or
sequential. Sequential systems contain state stored in memory elements internal to
the system. Th eir behavior depends both on the set of inputs supplied and on the
contents of the internal memory, or state of the system. Th us, a sequential system
cannot be described with a truth table. Instead, a sequential system is described as
a fi nite-state machine (or oft en just state machine). A fi nite-state machine has a set
of states and two functions, called the next-state function and the output function.
Th e set of states corresponds to all the possible values of the internal storage.
Th us, if there are n bits of storage, there are 2n states. Th e next-state function is a
combinational function that, given the inputs and the current state, determines the
next state of the system. Th e output function produces a set of outputs from the
current state and the inputs. Figure B.10.1 shows this diagrammatically.

Th e state machines we discuss here and in Chapter 4 are synchronous. Th is means
that the state changes together with the clock cycle, and a new state is computed
once every clock. Th us, the state elements are updated only on the clock edge. We
use this methodology in this section and throughout Chapter 4, and we do not

fi nite-state machine
A sequential logic
function consisting of a
set of inputs and out puts,
a next-state function that
maps the current state and
the inputs to a new state,
and an output function
that maps the current
state and possibly the
inputs to a set of asserted
outputs.

next-state function
A combinational function
that, given the inputs
and the current state,
determines the next state
of a fi nite-state machine.

B-68 Appendix B The Basics of Logic Design

usually show the clock explicitly. We use state machines throughout Chapter 4 to
control the execution of the processor and the actions of the datapath.

To illustrate how a fi nite-state machine operates and is designed, let’s look at a
simple and classic example: controlling a traffi c light. (Chapters 4 and 5 contain more
detailed examples of using fi nite-state machines to control processor execution.) When
a fi nite-state machine is used as a controller, the output function is oft en restricted to
depend on just the current state. Such a fi nite-state machine is called a Moore machine.
Th is is the type of fi nite-state machine we use throughout this book. If the output
function can depend on both the current state and the current input, the machine
is called a Mealy machine. Th ese two machines are equivalent in their capabilities,
and one can be turned into the other mechanically. Th e basic advantage of a Moore
machine is that it can be faster, while a Mealy machine may be smaller, since it may
need fewer states than a Moore machine. In Chapter 5, we discuss the diff erences in
more detail and show a Verilog version of fi nite-state control using a Mealy machine.

Our example concerns the control of a traffi c light at an intersection of a north-
south route and an east-west route. For simplicity, we will consider only the green
and red lights; adding the yellow light is left for an exercise. We want the lights to
cycle no faster than 30 seconds in each direction, so we will use a 0.033 Hz clock
so that the machine cycles between states at no faster than once every 30 seconds.
Th ere are two output signals:

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

FIGURE B.10.1 A state machine consists of internal storage that contains the state and
two combinational functions: the next-state function and the output function. Oft en, the
output function is restricted to take only the current state as its input; this does not change the capability of
a sequential machine, but does aff ect its internals.

 B.10 Finite-State Machines B-69

■ NSlite: When this signal is asserted, the light on the north-south road is
green; when this signal is deasserted, the light on the north-south road is red.

■ EWlite: When this signal is asserted, the light on the east-west road is green;
when this signal is deasserted, the light on the east-west road is red.

In addition, there are two inputs:

■ NScar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the north-south road (going north or south).

■ EWcar: Indicates that a car is over the detector placed in the roadbed in front
of the light on the east-west road (going east or west).

Th e traffi c light should change from one direction to the other only if a car is
waiting to go in the other direction; otherwise, the light should continue to show
green in the same direction as the last car that crossed the intersection.

To implement this simple traffi c light we need two states:
■ NSgreen: Th e traffi c light is green in the north-south direction.

■ EWgreen: Th e traffi c light is green in the east-west direction.

We also need to create the next-state function, which can be specifi ed with a table:

Inputs

NScar EWcar Next state

NSgreen 0 0 NSgreen

NSgreen 0 1 EWgreen

NSgreen 1 0 NSgreen

NSgreen 1 1 EWgreen

EWgreen 0 0 EWgreen

EWgreen 0 1 EWgreen

EWgreen 1 0 NSgreen

EWgreen 1 1 NSgreen

Notice that we didn’t specify in the algorithm what happens when a car
approaches from both directions. In this case, the next-state function given above
changes the state to ensure that a steady stream of cars from one direction cannot
lock out a car in the other direction.

Th e fi nite-state machine is completed by specifying the output function.
Before we examine how to implement this fi nite-state machine, let’s look at a

graphical representation, which is oft en used for fi nite-state machines. In this
representation, nodes are used to indicate states. Inside the node we place a list of
the outputs that are active for that state. Directed arcs are used to show the next-state

B-70 Appendix B The Basics of Logic Design

w

Outputs

NSlite EWlite

NSgreen 1 0

EWgreen 0 1

function, with labels on the arcs specifying the input condition as logic functions.
Figure B.10.2 shows the graphical representation for this fi nite-state machine.

NSlite EWlite
NScar

NSgreen EWgreen

EWcar

EWcar NScar

FIGURE B.10.2 The graphical representation of the two-state traffi c light controller. We
simplifi ed the logic functions on the state transitions. For example, the transition from NSgreen to EWgreen
in the next-state table is () ()NScar EWcar NScar EWcar , which is equivalent to EWcar.

A fi nite-state machine can be implemented with a register to hold the current
state and a block of combinational logic that computes the next-state function and
the output function. Figure B.10.3 shows how a fi nite-state machine with 4 bits of
state, and thus up to 16 states, might look. To implement the fi nite-state machine
in this way, we must fi rst assign state numbers to the states. Th is process is called
state assignment. For example, we could assign NSgreen to state 0 and EWgreen to
state 1. Th e state register would contain a single bit. Th e next-state function would
be given as

NextState CurrentState EWcar CurrentState NScar() ()

 B.11 Timing Methodologies B-71

where CurrentState is the contents of the state register (0 or 1) and NextState is the
output of the next-state function that will be written into the state register at the
end of the clock cycle. Th e output function is also simple:

NSlite CurrentState
EWlite CurrentState

�
�

Th e combinational logic block is oft en implemented using structured logic,
such as a PLA. A PLA can be constructed automatically from the next-state and
output function tables. In fact, there are computer-aided design (CAD) programs

Combinational logic

Outputs

State register

Inputs

Next state

FIGURE B.10.3 A fi nite-state machine is implemented with a state register that holds
the current state and a combinational logic block to compute the next state and output
functions. Th e latter two functions are oft en split apart and implemented with two separate blocks of logic,
which may require fewer gates.

that take either a graphical or textual representation of a fi nite-state machine and
produce an optimized implementation automatically. In Chapters 4 and 5, fi nite-
state machines were used to control processor execution. Appendix D discusses
the detailed implementation of these controllers with both PLAs and ROMs.

To show how we might write the control in Verilog, Figure B.10.4 shows a
Verilog version designed for synthesis. Note that for this simple control function,
a Mealy machine is not useful, but this style of specifi cation is used in Chapter 5 to
implement a control function that is a Mealy machine and has fewer states than the
Moore machine controller.

B-72 Appendix B The Basics of Logic Design

What is the smallest number of states in a Moore machine for which a Mealy
machine could have fewer states?

a. Two, since there could be a one-state Mealy machine that might do the same
thing.

b. Th ree, since there could be a simple Moore machine that went to one of two
diff erent states and always returned to the original state aft er that. For such a
simple machine, a two-state Mealy machine is possible.

c. You need at least four states to exploit the advantages of a Mealy machine
over a Moore machine.

 B.11 Timing Methodologies

Th roughout this appendix and in the rest of the text, we use an edge-triggered
timing methodology. Th is timing methodology has an advantage in that it is
simpler to explain and understand than a level-triggered methodology. In this
section, we explain this timing methodology in a little more detail and also
introduce level-sensitive clocking. We conclude this section by briefl y discussing

Check
Yourself

FIGURE B.10.4 A Verilog version of the traffi c light controller.

 B.11 Timing Methodologies B-73

the issue of asynchronous signals and synchronizers, an important problem for
digital designers.

Th e purpose of this section is to introduce the major concepts in clocking
methodology. Th e section makes some important simplifying assumptions; if you
are interested in understanding timing methodology in more detail, consult one of
the references listed at the end of this appendix.

We use an edge-triggered timing methodology because it is simpler to explain
and has fewer rules required for correctness. In particular, if we assume that all
clocks arrive at the same time, we are guaranteed that a system with edge-triggered
registers between blocks of combinational logic can operate correctly without races
if we simply make the clock long enough. A race occurs when the contents of a
state element depend on the relative speed of diff erent logic elements. In an edge-
triggered design, the clock cycle must be long enough to accommodate the path
from one fl ip-fl op through the combinational logic to another fl ip-fl op where it
must satisfy the setup-time requirement. Figure B.11.1 shows this requirement for
a system using rising edge-triggered fl ip-fl ops. In such a system the clock period
(or cycle time) must be at least as large as

t t tprop combinational setup� �

for the worst-case values of these three delays, which are defi ned as follows:

■ tprop is the time for a signal to propagate through a fl ip-fl op; it is also sometimes
called clock-to-Q.

■ tcombinational is the longest delay for any combinational logic (which by defi nition
is surrounded by two fl ip-fl ops).

■ tsetup is the time before the rising clock edge that the input to a fl ip-fl op must
be valid.

Flip-flop

D

C

Q
Combinational

logic block Flip-flop

D

C

Q

tprop tcombinational tsetup

FIGURE B.11.1 In an edge-triggered design, the clock must be long enough to allow
signals to be valid for the required setup time before the next clock edge. Th e time for a
fl ip-fl op input to propagate to the fl ip-fl ip outputs is tprop; the signal then takes tcombinational to travel through the
combinational logic and must be valid tsetup before the next clock edge.

B-74 Appendix B The Basics of Logic Design

We make one simplifying assumption: the hold-time requirements are satisfi ed,
which is almost never an issue with modern logic.

One additional complication that must be considered in edge-triggered designs
is clock skew. Clock skew is the diff erence in absolute time between when two state
elements see a clock edge. Clock skew arises because the clock signal will oft en
use two diff erent paths, with slightly diff erent delays, to reach two diff erent state
elements. If the clock skew is large enough, it may be possible for a state element to
change and cause the input to another fl ip-fl op to change before the clock edge is
seen by the second fl ip-fl op.

Figure B.11.2 illustrates this problem, ignoring setup time and fl ip-fl op
propagation delay. To avoid incorrect operation, the clock period is increased to
allow for the maximum clock skew. Th us, the clock period must be longer than

t t t tprop combinational setup skew� � �

With this constraint on the clock period, the two clocks can also arrive in the
opposite order, with the second clock arriving tskew earlier, and the circuit will work

clock skew Th e
diff erence in absolute time
between the times when
two state elements see a
clock edge.

Flip-flop

D

C

Q
Combinational
logic block with
delay time of Δ

Flip-flop

D

C

Q

Clock arrives
at time t

Clock arrives
after t + Δ

FIGURE B.11.2 Illustration of how clock skew can cause a race, leading to incorrect operation. Because of the diff erence
in when the two fl ip-fl ops see the clock, the signal that is stored into the fi rst fl ip-fl op can race forward and change the input to the second fl ip-
fl op before the clock arrives at the second fl ip-fl op.

correctly. Designers reduce clock-skew problems by carefully routing the clock
signal to minimize the diff erence in arrival times. In addition, smart designers also
provide some margin by making the clock a little longer than the minimum; this
allows for variation in components as well as in the power supply. Since clock skew
can also aff ect the hold-time requirements, minimizing the size of the clock skew
is important.

Edge-triggered designs have two drawbacks: they require extra logic and they
may sometimes be slower. Just looking at the D fl ip-fl op versus the level-sensitive
latch that we used to construct the fl ip-fl op shows that edge-triggered design
requires more logic. An alternative is to use level-sensitive clocking. Because state
changes in a level-sensitive methodology are not instantaneous, a level-sensitive
scheme is slightly more complex and requires additional care to make it operate
correctly.

level-sensitive
clocking A timing
methodology in which
state changes occur
at either high or low
clock levels but are not
instantaneous as such
changes are in edge-
triggered designs.

 B.11 Timing Methodologies B-75

Level-Sensitive Timing
In level-sensitive timing, the state changes occur at either high or low levels, but
they are not instantaneous as they are in an edge-triggered methodology. Because of
the noninstantaneous change in state, races can easily occur. To ensure that a level-
sensitive design will also work correctly if the clock is slow enough, designers use two-
phase clocking. Two-phase clocking is a scheme that makes use of two nonoverlapping
clock signals. Since the two clocks, typically called φ1 and φ2, are nonoverlapping, at
most one of the clock signals is high at any given time, as Figure B.11.3 shows. We
can use these two clocks to build a system that contains level-sensitive latches but is
free from any race conditions, just as the edge-triggered designs were.

Nonoverlapping
periods

Φ1

Φ2

FIGURE B.11.3 A two-phase clocking scheme showing the cycle of each clock and the
nonoverlapping periods.

Latch

D

C

Q
Combinational

logic blockΦ1

Latch

D

C

Q
Combinational

logic blockΦ2

Latch

D

C
Φ1

FIGURE B.11.4 A two-phase timing scheme with alternating latches showing how the system operates on both clock
phases. Th e output of a latch is stable on the opposite phase from its C input. Th us, the fi rst block of combinational inputs has a stable input
during φ2, and its output is latched by φ2. Th e second (rightmost) combinational block operates in just the opposite fashion, with stable inputs
during φ1. Th us, the delays through the combinational blocks determine the minimum time that the respective clocks must be asserted. Th e
size of the nonoverlapping period is determined by the maximum clock skew and the minimum delay of any logic block.

One simple way to design such a system is to alternate the use of latches that are
open on φ1 with latches that are open on φ2. Because both clocks are not asserted
at the same time, a race cannot occur. If the input to a combinational block is a φ1
clock, then its output is latched by a φ2 clock, which is open only during φ2 when
the input latch is closed and hence has a valid output. Figure B.11.4 shows how
a system with two-phase timing and alternating latches operates. As in an edge-
triggered design, we must pay attention to clock skew, particularly between the two

B-76 Appendix B The Basics of Logic Design

clock phases. By increasing the amount of nonoverlap between the two phases, we
can reduce the potential margin of error. Th us, the system is guaranteed to operate
correctly if each phase is long enough and if there is large enough nonoverlap
between the phases.

Asynchronous Inputs and Synchronizers
By using a single clock or a two-phase clock, we can eliminate race conditions
if clock-skew problems are avoided. Unfortunately, it is impractical to make an
entire system function with a single clock and still keep the clock skew small.
While the CPU may use a single clock, I/O devices will probably have their own
clock. An asynchronous device may communicate with the CPU through a series
of handshaking steps. To translate the asynchronous input to a synchronous signal
that can be used to change the state of a system, we need to use a synchronizer,
whose inputs are the asynchronous signal and a clock and whose output is a signal
synchronous with the input clock.

Our fi rst attempt to build a synchronizer uses an edge-triggered D fl ip-fl op,
whose D input is the asynchronous signal, as Figure B.11.5 shows. Because we
communicate with a handshaking protocol, it does not matter whether we detect
the asserted state of the asynchronous signal on one clock or the next, since the
signal will be held asserted until it is acknowledged. Th us, you might think that this
simple structure is enough to sample the signal accurately, which would be the case
except for one small problem.

Flip-flop
D

C

Q

Clock

Asynchronous input Synchronous output

FIGURE B.11.5 A synchronizer built from a D fl ip-fl op is used to sample an asynchronous
signal to produce an output that is synchronous with the clock. Th is “synchronizer” will not
work properly!

Th e problem is a situation called metastability. Suppose the asynchronous
signal is transitioning between high and low when the clock edge arrives. Clearly,
it is not possible to know whether the signal will be latched as high or low. Th at
problem we could live with. Unfortunately, the situation is worse: when the signal
that is sampled is not stable for the required setup and hold times, the fl ip-fl op may
go into a metastable state. In such a state, the output will not have a legitimate high
or low value, but will be in the indeterminate region between them. Furthermore,

metastability
A situation that occurs if
a signal is sampled when
it is not stable for the
required setup and hold
times, possibly causing
the sampled value to
fall in the indeterminate
region between a high and
low value.

 B.13 Concluding Remarks B-77

the fl ip-fl op is not guaranteed to exit this state in any bounded amount of time.
Some logic blocks that look at the output of the fl ip-fl op may see its output as 0,
while others may see it as 1. Th is situation is called a synchronizer failure.

In a purely synchronous system, synchronizer failure can be avoided by ensuring
that the setup and hold times for a fl ip-fl op or latch are always met, but this is
impossible when the input is asynchronous. Instead, the only solution possible is to
wait long enough before looking at the output of the fl ip-fl op to ensure that its output
is stable, and that it has exited the metastable state, if it ever entered it. How long is
long enough? Well, the probability that the fl ip-fl op will stay in the metastable state
decreases exponentially, so aft er a very short time the probability that the fl ip-fl op
is in the metastable state is very low; however, the probability never reaches 0! So
designers wait long enough such that the probability of a synchronizer failure is very
low, and the time between such failures will be years or even thousands of years.

For most fl ip-fl op designs, waiting for a period that is several times longer than
the setup time makes the probability of synchronization failure very low. If the
clock rate is longer than the potential metastability period (which is likely), then a
safe synchronizer can be built with two D fl ip-fl ops, as Figure B.11.6 shows. If you
are interested in reading more about these problems, look into the references.

synchronizer failure
A situation in which
a fl ip-fl op enters a
metastable state and
where some logic blocks
reading the output of the
fl ip-fl op see a 0 while
others see a 1.

Flip-flop

D

C

Q

Clock

Asynchronous input
Flip-flop

D

C

Q Synchronous output

FIGURE B.11.6 This synchronizer will work correctly if the period of metastability that
we wish to guard against is less than the clock period. Although the output of the fi rst fl ip-fl op
may be metastable, it will not be seen by any other logic element until the second clock, when the second D
fl ip-fl op samples the signal, which by that time should no longer be in a metastable state.

Suppose we have a design with very large clock skew—longer than the register
propagation time. Is it always possible for such a design to slow the clock down
enough to guarantee that the logic operates properly?

a. Yes, if the clock is slow enough the signals can always propagate and the
design will work, even if the skew is very large.

b. No, since it is possible that two registers see the same clock edge far enough
apart that a register is triggered, and its outputs propagated and seen by a
second register with the same clock edge.

Check
Yourself

propagation time Th e
time required for an input
to a fl ip-fl op to propagate
to the outputs of the fl ip-
fl op.

B-78 Appendix B The Basics of Logic Design

 B.12 Field Programmable Devices

Within a custom or semicustom chip, designers can make use of the fl exibility of the
underlying structure to easily implement combinational or sequential logic. How
can a designer who does not want to use a custom or semicustom IC implement
a complex piece of logic taking advantage of the very high levels of integration
available? Th e most popular component used for sequential and combinational
logic design outside of a custom or semicustom IC is a fi eld programmable
device (FPD). An FPD is an integrated circuit containing combinational logic, and
possibly memory devices, that are confi gurable by the end user.

FPDs generally fall into two camps: programmable logic devices (PLDs),
which are purely combinational, and fi eld programmable gate arrays (FPGAs),
which provide both combinational logic and fl ip-fl ops. PLDs consist of two forms:
simple PLDs (SPLDs), which are usually either a PLA or a programmable array
logic (PAL), and complex PLDs, which allow more than one logic block as well as
confi gurable interconnections among blocks. When we speak of a PLA in a PLD,
we mean a PLA with user programmable and-plane and or-plane. A PAL is like a
PLA, except that the or-plane is fi xed.

Before we discuss FPGAs, it is useful to talk about how FPDs are confi gured.
Confi guration is essentially a question of where to make or break connections.
Gate and register structures are static, but the connections can be confi gured.
Notice that by confi guring the connections, a user determines what logic functions
are implemented. Consider a confi gurable PLA: by determining where the
connections are in the and-plane and the or-plane, the user dictates what logical
functions are computed in the PLA. Connections in FPDs are either permanent
or reconfi gurable. Permanent connections involve the creation or destruction of
a connection between two wires. Current FPLDs all use an antifuse technology,
which allows a connection to be built at programming time that is then permanent.
Th e other way to confi gure CMOS FPLDs is through a SRAM. Th e SRAM is
downloaded at power-on, and the contents control the setting of switches, which
in turn determines which metal lines are connected. Th e use of SRAM control
has the advantage in that the FPD can be reconfi gured by changing the contents
of the SRAM. Th e disadvantages of the SRAM-based control are two fold: the
confi guration is volatile and must be reloaded on power-on, and the use of active
transistors for switches slightly increases the resistance of such connections.

FPGAs include both logic and memory devices, usually structured in a two-
dimensional array with the corridors dividing the rows and columns used for

fi eld programmable
devices (FPD)
An integrated circuit
containing combinational
logic, and possibly
memory devices, that are
confi gurable by the end
user.

programmable logic
device (PLD)
An integrated circuit
containing combinational
logic whose function is
confi gured by the end
user.

fi eld programmable
gate array (FPGA)
A confi gurable integrated
circuit containing both
combinational logic
blocks and fl ip-fl ops.

simple programmable
logic device
(SPLD) Programmable
logic device, usually
containing either a single
PAL or PLA.

programmable array
logic (PAL) Contains a
programmable and-plane
followed by a fi xed or-
plane.

antifuse A structure in
an integrated circuit that
when programmed makes
a permanent connection
between two wires.

 B.14 Exercises B-79

global interconnect between the cells of the array. Each cell is a combination of
gates and fl ip-fl ops that can be programmed to perform some specifi c function.
Because they are basically small, programmable RAMs, they are also called lookup
tables (LUTs). Newer FPGAs contain more sophisticated building blocks such as
pieces of adders and RAM blocks that can be used to build register fi les. A few large
FPGAs even contain 32-bit RISC cores!

In addition to programming each cell to perform a specifi c function, the
interconnections between cells are also programmable, allowing modern FPGAs
with hundreds of blocks and hundreds of thousands of gates to be used for complex
logic functions. Interconnect is a major challenge in custom chips, and this is even
more true for FPGAs, because cells do not represent natural units of decomposition
for structured design. In many FPGAs, 90% of the area is reserved for interconnect
and only 10% is for logic and memory blocks.

Just as you cannot design a custom or semicustom chip without CAD tools, you
also need them for FPDs. Logic synthesis tools have been developed that target
FPGAs, allowing the generation of a system using FPGAs from structural and
behavioral Verilog.

 B.13 Concluding Remarks

Th is appendix introduces the basics of logic design. If you have digested the
material in this appendix, you are ready to tackle the material in Chapters 4 and 5,
both of which use the concepts discussed in this appendix extensively.

lookup tables (LUTs)
In a fi eld programmable
device, the name given
to the cells because they
consist of a small amount
of logic and RAM.

Further Reading
Th ere are a number of good texts on logic design. Here are some you might like to
look into.

Ciletti, M. D. [2002]. Advanced Digital Design with the Verilog HDL, Englewood
Cliff s, NJ: Prentice Hall.
A thorough book on logic design using Verilog.

Katz, R. H. [2004]. Modern Logic Design, 2nd ed., Reading, MA: Addison-Wesley.
A general text on logic design.

Wakerly, J. F. [2000]. Digital Design: Principles and Practices, 3rd ed., Englewood
Cliff s, NJ: Prentice Hall.
A general text on logic design.

B-80 Appendix B The Basics of Logic Design

 B.14 Exercises

B.1 [10] �§B.2� In addition to the basic laws we discussed in this section, there
are two important theorems, called DeMorgan’s theorems:

A B A B and A B A B

Prove DeMorgan’s theorems with a truth table of the form

A B A B A + B A ˙ B A ˙ B A + B

0 0 1 1 1 1 1 1

0 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 0 0 0 0 0 0

B.2 [15] �§B.2� Prove that the two equations for E in the example starting on
page B-7 are equivalent by using DeMorgan’s theorems and the axioms shown on
page B-7.

B.3 [10] �§B.2� Show that there are 2n entries in a truth table for a function with
n inputs.

B.4 [10] �§B.2� One logic function that is used for a variety of purposes
(including within adders and to compute parity) is exclusive OR. Th e output of a
two-input exclusive OR function is true only if exactly one of the inputs is true.
Show the truth table for a two-input exclusive OR function and implement this
function using AND gates, OR gates, and inverters.

B.5 [15] �§B.2� Prove that the NOR gate is universal by showing how to build
the AND, OR, and NOT functions using a two-input NOR gate.

B.6 [15] �§B.2� Prove that the NAND gate is universal by showing how to build
the AND, OR, and NOT functions using a two-input NAND gate.

B.7 [10] �§§B.2, B.3� Construct the truth table for a four-input odd-parity
function (see page B-65 for a description of parity).

B.8 [10] �§§B.2, B.3� Implement the four-input odd-parity function with AND
and OR gates using bubbled inputs and outputs.

B.9 [10] �§§B.2, B.3� Implement the four-input odd-parity function with a PLA.

 B.14 Exercises B-81

B.10 [15] �§§B.2, B.3� Prove that a two-input multiplexor is also universal by
showing how to build the NAND (or NOR) gate using a multiplexor.

B.11 [5] �§§4.2, B.2, B.3� Assume that X consists of 3 bits, x2 x1 x0. Write four
logic functions that are true if and only if

■ X contains only one 0

■ X contains an even number of 0s

■ X when interpreted as an unsigned binary number is less than 4

■ X when interpreted as a signed (two’s complement) number is negative

B.12 [5] �§§4.2, B.2, B.3� Implement the four functions described in Exercise
B.11 using a PLA.

B.13 [5] �§§4.2, B.2, B.3� Assume that X consists of 3 bits, x2 x1 x0, and Y
consists of 3 bits, y2 y1 y0. Write logic functions that are true if and only if

■ X � Y, where X and Y are thought of as unsigned binary numbers

■ X � Y, where X and Y are thought of as signed (two’s complement) numbers

■ X � Y

Use a hierarchical approach that can be extended to larger numbers of bits. Show
how can you extend it to 6-bit comparison.

B.14 [5] �§§B.2, B.3� Implement a switching network that has two data inputs
(A and B), two data outputs (C and D), and a control input (S). If S equals 1, the
network is in pass-through mode, and C should equal A, and D should equal B. If
S equals 0, the network is in crossing mode, and C should equal B, and D should
equal A.

B.15 [15] �§§B.2, B.3� Derive the product-of-sums representation for E shown
on page B-11 starting with the sum-of-products representation. You will need to
use DeMorgan’s theorems.

B.16 [30] �§§B.2, B.3� Give an algorithm for constructing the sum-of- products
representation for an arbitrary logic equation consisting of AND, OR, and NOT.
Th e algorithm should be recursive and should not construct the truth table in the
process.

B.17 [5] �§§B.2, B.3� Show a truth table for a multiplexor (inputs A, B, and S;
output C), using don’t cares to simplify the table where possible.

B-82 Appendix B The Basics of Logic Design

B.18 [5] �§B.3� What is the function implemented by the following Verilog
modules:

module FUNC1 (I0, I1, S, out);
 input I0, I1;
 input S;
 output out;
 out = S? I1: I0;
endmodule

module FUNC2 (out,ctl,clk,reset);
 output [7:0] out;
 input ctl, clk, reset;
 reg [7:0] out;
 always @(posedge clk)
 if (reset) begin
 out <= 8’b0 ;
 end
 else if (ctl) begin
 out <= out + 1;
 end
 else begin
 out <= out - 1;
 end
endmodule

B.19 [5] �§B.4� Th e Verilog code on page B-53 is for a D fl ip-fl op. Show the
Verilog code for a D latch.

B.20 [10] �§§B.3, B.4� Write down a Verilog module implementation of a 2-to-4
decoder (and/or encoder).

B.21 [10] �§§B.3, B.4� Given the following logic diagram for an accumulator,
write down the Verilog module implementation of it. Assume a positive edge-
triggered register and asynchronous Rst.

 B.14 Exercises B-83

In

OutLoad
16

Adder

Register

Clk

Rst

Load

�

16

B.22 [20] �§§B3, B.4, B.5� Section 3.3 presents basic operation and possible
implementations of multipliers. A basic unit of such implementations is a shift -
and-add unit. Show a Verilog implementation for this unit. Show how can you use
this unit to build a 32-bit multiplier.

B.23 [20] �§§B3, B.4, B.5� Repeat Exercise B.22, but for an unsigned divider
rather than a multiplier.

B.24 [15] �§B.5� Th e ALU supported set on less than (slt) using just the sign
bit of the adder. Let’s try a set on less than operation using the values �7ten and 6ten.
To make it simpler to follow the example, let’s limit the binary representations to 4
bits: 1001two and 0110two.

1001two – 0110two = 1001two + 1010two = 0011two

Th is result would suggest that �7 � 6, which is clearly wrong. Hence, we must
factor in overfl ow in the decision. Modify the 1-bit ALU in Figure B.5.10 on page
B-33 to handle slt correctly. Make your changes on a photocopy of this fi gure to
save time.

B.25 [20] �§B.6� A simple check for overfl ow during addition is to see if the
CarryIn to the most signifi cant bit is not the same as the CarryOut of the most
signifi cant bit. Prove that this check is the same as in Figure 3.2.

B.26 [5] �§B.6� Rewrite the equations on page B-44 for a carry-lookahead logic
for a 16-bit adder using a new notation. First, use the names for the CarryIn signals
of the individual bits of the adder. Th at is, use c4, c8, c12, … instead of C1, C2,
C3, …. In addition, let Pi,j; mean a propagate signal for bits i to j, and Gi,j; mean a
generate signal for bits i to j. For example, the equation

C G P G P P c2 1 1 0 1 0 0() ()

B-84 Appendix B The Basics of Logic Design

can be rewritten as

c G P G P P c8 07 4 7 4 3 0 7 4 3 0, , , , ,() ()

Th is more general notation is useful in creating wider adders.

B.27 [15] �§B.6� Write the equations for the carry-lookahead logic for a 64-
bit adder using the new notation from Exercise B.26 and using 16-bit adders as
building blocks. Include a drawing similar to Figure B.6.3 in your solution.

B.28 [10] �§B.6� Now calculate the relative performance of adders. Assume that
hardware corresponding to any equation containing only OR or AND terms, such
as the equations for pi and gi on page B-40, takes one time unit T. Equations that
consist of the OR of several AND terms, such as the equations for c1, c2, c3, and
c4 on page B-40, would thus take two time units, 2T. Th e reason is it would take T
to produce the AND terms and then an additional T to produce the result of the
OR. Calculate the numbers and performance ratio for 4-bit adders for both ripple
carry and carry lookahead. If the terms in equations are further defi ned by other
equations, then add the appropriate delays for those intermediate equations, and
continue recursively until the actual input bits of the adder are used in an equation.
Include a drawing of each adder labeled with the calculated delays and the path of
the worst-case delay highlighted.

B.29 [15] �§B.6� Th is exercise is similar to Exercise B.28, but this time calculate
the relative speeds of a 16-bit adder using ripple carry only, ripple carry of 4-bit
groups that use carry lookahead, and the carry-lookahead scheme on page B-39.

B.30 [15] �§B.6� Th is exercise is similar to Exercises B.28 and B.29, but this
time calculate the relative speeds of a 64-bit adder using ripple carry only, ripple
carry of 4-bit groups that use carry lookahead, ripple carry of 16-bit groups that use
carry lookahead, and the carry-lookahead scheme from Exercise B.27.

B.31 [10] �§B.6� Instead of thinking of an adder as a device that adds two
numbers and then links the carries together, we can think of the adder as a hardware
device that can add three inputs together (ai, bi, ci) and produce two outputs
(s, ci � 1). When adding two numbers together, there is little we can do with this
observation. When we are adding more than two operands, it is possible to reduce
the cost of the carry. Th e idea is to form two independent sums, called S	 (sum bits)
and C	 (carry bits). At the end of the process, we need to add C	 and S	 together
using a normal adder. Th is technique of delaying carry propagation until the end
of a sum of numbers is called carry save addition. Th e block drawing on the lower
right of Figure B.14.1 (see below) shows the organization, with two levels of carry
save adders connected by a single normal adder.

Calculate the delays to add four 16-bit numbers using full carry-lookahead adders
versus carry save with a carry-lookahead adder forming the fi nal sum. (Th e time
unit T in Exercise B.28 is the same.)

 B.14 Exercises B-85

B.32 [20] �§B.6� Perhaps the most likely case of adding many numbers at once
in a computer would be when trying to multiply more quickly by using many
adders to add many numbers in a single clock cycle. Compared to the multiply
algorithm in Chapter 3, a carry save scheme with many adders could multiply more
than 10 times faster. Th is exercise estimates the cost and speed of a combinational
multiplier to multiply two positive 16-bit numbers. Assume that you have 16
intermediate terms M15, M14, …, M0, called partial products, that contain the
multiplicand ANDed with multiplier bits m15, m14, …, m0. Th e idea is to use
carry save adders to reduce the n operands into 2n/3 in parallel groups of three,
and do this repeatedly until you get two large numbers to add together with a
traditional adder.

FIGURE B.14.1 Traditional ripple carry and carry save addition of four 4-bit numbers. Th e
details are shown on the left , with the individual signals in lowercase, and the corresponding higher-level
blocks are on the right, with collective signals in upper case. Note that the sum of four n-bit numbers can
take n + 2 bits.

s4 s3 s2 s1 s0

f0e0b0f1e1b1f2e2b2f3e3b3

a0a1a2a3

s5

c'3 s'3s'4 c'2 s'2 c'1 s'1 c'0 s'0

Carry save adder

E FBA

Carry save adder

Traditional adder

S

C' S'

s5 s0

b0a0

e0

f0

s1

b1a1

e1

f1

s2

b2a2

e2

f2

s3

b3a3

e3

f3

s4

E F

S

BA

Traditional adder

Traditional adder

Traditional adder

� � � �

� � � �

�

�

�

� � � �

� � �

� � �

� � � �

B-86 Appendix B The Basics of Logic Design

First, show the block organization of the 16-bit carry save adders to add these 16
terms, as shown on the right in Figure B.14.1. Th en calculate the delays to add these
16 numbers. Compare this time to the iterative multiplication scheme in Chapter
3 but only assume 16 iterations using a 16-bit adder that has full carry lookahead
whose speed was calculated in Exercise B.29.

B.33 [10] �§B.6� Th ere are times when we want to add a collection of numbers
together. Suppose you wanted to add four 4-bit numbers (A, B, E, F) using 1-bit
full adders. Let’s ignore carry lookahead for now. You would likely connect the
1-bit adders in the organization at the top of Figure B.14.1. Below the traditional
organization is a novel organization of full adders. Try adding four numbers using
both organizations to convince yourself that you get the same answer.

B.34 [5] �§B.6� First, show the block organization of the 16-bit carry save
adders to add these 16 terms, as shown in Figure B.14.1. Assume that the time delay
through each 1-bit adder is 2T. Calculate the time of adding four 4-bit numbers to
the organization at the top versus the organization at the bottom of Figure B.14.1.

B.35 [5] �§B.8� Quite oft en, you would expect that given a timing diagram
containing a description of changes that take place on a data input D and a clock
input C (as in Figures B.8.3 and B.8.6 on pages B-52 and B-54, respectively), there
would be diff erences between the output waveforms (Q) for a D latch and a D fl ip-
fl op. In a sentence or two, describe the circumstances (e.g., the nature of the inputs)
for which there would not be any diff erence between the two output waveforms.

B.36 [5] �§B.8� Figure B.8.8 on page B-55 illustrates the implementation of the
register fi le for the MIPS datapath. Pretend that a new register fi le is to be built,
but that there are only two registers and only one read port, and that each register
has only 2 bits of data. Redraw Figure B.8.8 so that every wire in your diagram
corresponds to only 1 bit of data (unlike the diagram in Figure B.8.8, in which
some wires are 5 bits and some wires are 32 bits). Redraw the registers using D fl ip-
fl ops. You do not need to show how to implement a D fl ip-fl op or a multiplexor.

B.37 [10] �§B.10� A friend would like you to build an “electronic eye” for use
as a fake security device. Th e device consists of three lights lined up in a row,
controlled by the outputs Left , Middle, and Right, which, if asserted, indicate that
a light should be on. Only one light is on at a time, and the light “moves” from
left to right and then from right to left , thus scaring away thieves who believe that
the device is monitoring their activity. Draw the graphical representation for the
fi nite-state machine used to specify the electronic eye. Note that the rate of the eye’s
movement will be controlled by the clock speed (which should not be too great)
and that there are essentially no inputs.

B.38 [10] �§B.10� Assign state numbers to the states of the fi nite-state machine
you constructed for Exercise B.37 and write a set of logic equations for each of the
outputs, including the next-state bits.

 B.14 Exercises B-87

B.39 [15] �§§B.2, B.8, B.10� Construct a 3-bit counter using three D fl ip-
fl ops and a selection of gates. Th e inputs should consist of a signal that resets the
counter to 0, called reset, and a signal to increment the counter, called inc. Th e
outputs should be the value of the counter. When the counter has value 7 and is
incremented, it should wrap around and become 0.

B.40 [20] �§B.10� A Gray code is a sequence of binary numbers with the property
that no more than 1 bit changes in going from one element of the sequence to
another. For example, here is a 3-bit binary Gray code: 000, 001, 011, 010, 110,
111, 101, and 100. Using three D fl ip-fl ops and a PLA, construct a 3-bit Gray code
counter that has two inputs: reset, which sets the counter to 000, and inc, which
makes the counter go to the next value in the sequence. Note that the code is cyclic,
so that the value aft er 100 in the sequence is 000.

B.41 [25] �§B.10� We wish to add a yellow light to our traffi c light example on
page B-68. We will do this by changing the clock to run at 0.25 Hz (a 4-second clock
cycle time), which is the duration of a yellow light. To prevent the green and red lights
from cycling too fast, we add a 30-second timer. Th e timer has a single input, called
TimerReset, which restarts the timer, and a single output, called TimerSignal, which
indicates that the 30-second period has expired. Also, we must redefi ne the traffi c
signals to include yellow. We do this by defi ning two out put signals for each light:
green and yellow. If the output NSgreen is asserted, the green light is on; if the output
NSyellow is asserted, the yellow light is on. If both signals are off , the red light is on. Do
not assert both the green and yellow signals at the same time, since American drivers
will certainly be confused, even if European drivers understand what this means! Draw
the graphical representation for the fi nite-state machine for this improved controller.
Choose names for the states that are diff erent from the names of the outputs.

B.42 [15] �§B.10� Write down the next-state and output-function tables for the
traffi c light controller described in Exercise B.41.

B.43 [15] �§§B.2, B.10� Assign state numbers to the states in the traf-fi c light
example of Exercise B.41 and use the tables of Exercise B.42 to write a set of logic
equations for each of the outputs, including the next-state outputs.

B.44 [15] �§§B.3, B.10� Implement the logic equations of Exercise B.43 as a
PLA.

§B.2, page B-8: No. If A � 1, C � 1, B � 0, the fi rst is true, but the second is false.
§B.3, page B-20: C.
§B.4, page B-22: Th ey are all exactly the same.
§B.4, page B-26: A � 0, B � 1.
§B.5, page B-38: 2.
§B.6, page B-47: 1.
§B.8, page B-58: c.
§B.10, page B-72: b.
§B.11, page B-77: b.

Answers to
Check Yourself

