
HIGH PERFORMANCE COMPUTER ARCHITECTURE midterm exam 03-11-2020 MATR.NO.__________________

REVISED 26-10-2023 SURNAME__________________

 FIRST NAME__________________

1) (POINTS 35/40) Consider a triple-dispatch (1

instruction per cycle) processor using

Tomasulo's algorithm to perform the dynamic

scheduling of instructions on the pipeline shown

in the following figure. This pipeline is executing

the following program, which performs a search

within a vector (initially, R1=0).

etic: LW R2, 0(R1) ; read Xi

 MULI R2, R2, 3 ; multiplies Xi by 3

 SW R2, 0(R1) ; write Xi

 ADDI R1, R1, 4 ; update R1

 BNE R2, R0, etic ; continue to loop if

false

C
o
m

m
o

n
 D

a
ta

 B
u

s

(I-cache

Access) (Decode)

Regs

WRITE-BACK

Mult. 1
Mult. 2

Effective

Address
D-Cache 1

(DISPATCH) (ISSUE)

LQ

SQ

M RS

LS RS

A RS

(Complete)

2 RSM

2 RSLS

2 RSA

2 RSB

3 ELEMLQ

3 ELEMSQ

F D P I+X1 WX2 X3

M FU

LS FU

A FU

1

B RS
B FU

+

Integer

Integer

Mult. 3 Mult. 4

X4

Mult. 5

X5

Working hypothesis:
• the loop executes speculatively in terms of direction (always taken) and regarding the branch condition;
 high-performance fetch breaks after fetching a branch

• the issue stage (I) calculates the address of the actual read/write and push it into load/store queues; only 1 instruction is issued per cycle

• reads require 5 clock cycles; writes take 1 cycles (they are written in a write-buffer + split-cache)
• when accessing memory (M), reads have precedence over writes and must be executed in-order

• there is a single CDB

• dispatch stage (P) and complete stage (W) require 1 clock cycle
• ASSUME that the reservation stations could be freed right before the start of issue phase (therefore extending the duration of P stage)

• only 1 instruction is committed (C stage) per cycle

• there are separated integer units: one for the calculation of the actual address, one for arithmetic and logical operations,
 one of the integer multiplication and one for the evaluation of the branch condition, as illustrated in this table:

• the functional units TAKE advantage of pipelining techniques internally

• the load queue has 3 slots; the store queue has 3 slots (writes wait for the operand in the store queue, i.e., in the execution stage)

Complete the following chart until the end of the FOURTH iteration of the above code fragment in the case of dynamic

scheduling with speculation. Also add the instruction that occupies a certain reservation station (one of the 8) as indicated:

1) (POINTS 5/30) On a Linux system, write the SINGLE command line to perform at the BASH shell prompt the

following operation (please note that no intermediate files should be used):

• Find all lines containing “ly” in files having a name starting with “fi”, followed by a single numeric

digit and extension “.txt”

• The list of lines should be sorted alphabetically

• Then the sorted list should be written in the file “precious.txt”

Type of Functional Unit No. of Functional Units Cycles for stage I+X No. of reservation stations

LS: Integer (effective addr.) 1 1 2
A: Integer (op. A-L) 1 1 1

B: Integer (branch calc.) 1 1 2

M: Integer Multiplication 1 5 2

Instr.

No..

Instruction

name

ALU

RS1

ALU

RS2

LS

RS1

LS

RS2

BU

RS1

BU

RS2

MU

RS1

MU

RS2

P: disPatch

(clock)

I+X:Issue+Exec

(start-stop)

M: MEM.ACCESS

(start-stop)

W: CDB-write

(clock)

C: Commit

(clock)

Comments

I01 LW R2,0(R1) I01

1-1 1 2-2 3-7 8 9

… …

… …

HIGH PERFORMANCE COMPUTER ARCHITECTURE midterm exam 03-11-2020 – SOLUTION

REVISED 26-10-2023

EXERCIZE 1

Instr.

No..

Instruction

name

ALU

RS1

(start-

stop)

LS

RS1

(start-

stop)

LS

RS2

(start-

stop)

BU

RS1

(start-

stop)

BU

RS2

(start-

stop)

MU

RS

(start-

stop)1

MU

RS2

(start-

stop)

P:

disPatch

(clock)

I+X:

Issue+Exec

(start-stop)

M:

MEM. ACC.

(start-stop)

W:

CDB-write

(clock)

C:

Commit

(clock)

Comments

I01 LW R2,0(R1)
 I01

1-1

1 2-2 3-7 8 9

I02 MULI R2,R2,3
 I02

1-8

1 9-13 -- 14 15 I waits R2 from 1/LW

I03 SW R2,0(R1)
 I03

1-2

1 3-3 23 -- 24 I waits issue logic; M waits R2 M waits mem*

I04 ADDI R1,R1,4
I04

2-3

2 4-4 -- 5 25 I waits issue logic;

I05 BNE R2,R0,etic
 I01

2-14

2 15-15 -- -- 26 I waits R2 from 1/MULI

I06 LW R2,0(R1) I06

3-5

3 6-6 8-12 13 27 I waits R1 from 1/MULI; M waits mem,

I07 MULI R2,R2,3
 I07

3-13 3 14-18 -- 19 28 I waits R2 from 2/LW;

I08 SW R2,0(R1)
 I08

3-6

3 7-7 24 -- 29 I waits R1; I waits issue logic; M waits R2; M waits mem

I09 ADDI R1,R1,4
I09

4-7

4 8-8 -- 9 30 I waits R1; I waits issue logic;

I10 BNE R2,R0,etic
 I10

4-19

4 20-20 -- -- 31 I waits R2 from 2/MULI-R2;

I11 LW R2,0(R1) I11

6-9

6 10-10 13-17 18 32 P waits EA-RSs I waits issue logic; I waits R1; M waits mem;

I12 MULI R2,R2,3
 I12

9-18

9 19-23 -- 24 33 P waits M-RSs; I waits R2 from 3/LW

I13 SW R2,0(R1)
 I13

9-10

9 11-11 25 -- 34 I waits R1; I waits issue logic; M waits R2; M waits mem

I14 ADDI R1,R1,4
I14

9-11

9 12-12 -- 15 35 I waits issue logic; CDB conflict

I15 BNE R2,R0,etic
 I15

14-24

15 25-25 -- -- 36 P waits B-RSs; I waits R2 from 3/MULI

I16 LW R2,0(R1) I16

16-16

16 17-17 18-22 23 37 I waits R1; M waits mem;

I17 MULI R2,R2,3
 I17

16-23 16 24-28 -- 29 38 I waits R2 from 4/LW

I18 SW R2,0(R1)
 I18

16-25

16 26-26 30 -- 39
I waits R1; I waits issue logic; M waits R2; M waits

mem*;

I19 ADDI R1,R1,4
I19

17-17

17 18-18 -- 20 40 CDB conflict

I20 BNE R2,R0,etic
 I20

20-29

20 30-30 -- 41 P waits B-RSs; I waits R2 from 4/MULI

* We choose to give priority to pop LW from LQ before popping SW from SQ.

EXERCIZE 2

The requested command line is:

grep ly fi[0-9].txt | sort > precious.txt

