
HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010 MATRICULATION NO.__________________
(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME____________________
REVISED 16-10-2024 FIRST NAME____________________

Working hypothesis:
• the pipeline implements a dual-dispatch policy
• the instructions after a branch are executed speculatively and predicted ‘taken’
• high-performance fetch breaks after fetching a branch
• the issue stage (I) calculates the address of the actual reads and writes
• reads require 1 clock cycle; writes require 1 clock cycles
• when accessing memory (M), writes have precedence over reads and must be executed in-order
• there is a single CDB
• dispatch stage (D) and complete stage (C) require 1 clock cycle
• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition
• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
• the load buffer has 5 slots
• the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)
• the rest of the processor and has the following characteristics

Type of Functional Unit No. of Functional Units Cycles for stage I+X No. of reservation stations
Integer (effective addr.) 1 1 2
Integer (op. A-L) 1 1 2
Integer (branch calc.) 1 1 2
FP Adder 1 4 3
FP Multiplier 1 8 3
FP Divider 1 15 2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.
Iter. Instruction P disPatch

(start-stop)
I+X Issue
(start-stop)

M MEM
ACCESS (clock)

W CDB-Write
(Complete) (clock)

C Commit
(clock)

Comments

1 L.D F2,0(R1) 1-4 2 3 4 5
1 MUL.D F4,F2,F0 1-13 5-12 13 14
1 L.D F6,400(R1)

2) (POINTS 17/40) The test-and-set method is the simplest synchronization mechanism and it
is available in the large majority of commercial shared-memory machines. Such mechanism
is based on the atomic exchange operation EXCH that consists in loading the old value at a
given address and store into the same address a new value. The “lock” mechanism is in turn
implemented upon such atomic operation by spinning on a specific memory address until the
lock is open (the returned value is a zero, meaning “unlocked”, instead of a one meaning
“locked”). The following code represent a possible implementation:

LOCK CODE:
 tas: ADDI R2, R0, 1
 lockit: EXCH R2, 0(R1)
 BNE R2, R0, lockit
UNLOCK CODE:
 unlock: SW R0,0(R1)

Let’s consider a situation in which three processors (P0, P1, P15) that try to lock the address
0x100 in a machine having 16 processors. Assume an MSI coherence protocol and the cache
contents represented in figure. The bus-transaction costs are:

 Creadblk=100, Ccache-to-cache=70, Cinvalidate=15, Cwrite-back=10.
For the sake of simplicity, assume also that the critical sections last 1000 cycles.
Assuming that the processors acquire the lock in the order P0 P1P15 and given the initial situation of caches and memory represented above,
calculate: a) how many bus transactions are there; b) how many memory stall cycles for each of the processors are necessary before acquiring the lock.

3) (POINTS 6/40) Calculate the PARALLELISM, by using WORK e
SPAN, for the following Cilk implementation of the recursive
Fibonacci code in case of n=5.

int fib(int n) {
 if (n < 2) return;
 int x, y;
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 cilk_sync;
 return x+y;
}

 (POINTS 17/40) Consider the following snippet of code
running on a processor that uses the Tomasulo's algorithm to
perform the dynamic scheduling of instructions. The program
performs the operation Y=aX/Y on a vector of 100 elements.
Initially, R1 = 0 and F0 contains the value of the constant ‘a’.

etic: L.D F2, 0(R1) ; read Xi

 MUL.D F4, F2, F0 ; multiply a*Xi
 L.D F6, 400(R1) ; load Yi
 DIV.D F6, F4, F6 ; a*Xi/Yi
 S.D F6, 400(R1) ; store Yi
 ADDI R1, R1, 8 ; update R1
 SGTI R3, R1, 800 ; R1 >? 800, result in R3
 BEQ R3, R0, etic ; continue to loop if false

C
o

m
m

on
 D

ata
 B

u
s

(I-cache
Access) (Decode)

Regs

WRITE-BACK

Address
Effective

D-Cache 1 D-Cache 2

(DISPATCH) (ISSUE+EXECUTE)

AL RS

(Complete)

2 RSFD
3 RSFM
3 RSFA
2 RSLS
2 RSAL
2 RSB
5 ELEMLQ
5 ELEMSQ

F D P WI+X

LS FU

1

B RS

B FU

+

INTEGER
ADDER

+

1
AL FU

INTEGER
ADDER

+

LQ

SQ

1

M RS

FA FU

FLOATING POINT
ADDER

. + .

1
FM FU

FLOATING POINT
MULTIPLIER

. * .

FA RS

FM RS

1
FD FU

FLOATING POINT
DIVIDER

. / .

FD RS

