
HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010 MATRICULATION NO.__________________

(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME____________________

REVISED 16-10-2024 FIRST NAME____________________

Working hypothesis:

• the pipeline implements a dual-dispatch policy

• the instructions after a branch are executed speculatively and predicted ‘taken’
• high-performance fetch breaks after fetching a branch

• the issue stage (I) calculates the address of the actual reads and writes

• reads require 1 clock cycle; writes require 1 clock cycles
• when accessing memory (M), writes have precedence over reads and must be executed in-order

• there is a single CDB

• dispatch stage (D) and complete stage (C) require 1 clock cycle
• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition

• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)

• the load buffer has 5 slots
• the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)

• the rest of the processor and has the following characteristics

Type of Functional Unit No. of Functional Units Cycles for stage I+X No. of reservation stations

Integer (effective addr.) 1 1 2

Integer (op. A-L) 1 1 2
Integer (branch calc.) 1 1 2

FP Adder 1 4 3

FP Multiplier 1 8 3
FP Divider 1 15 2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.
Iter. Instruction P disPatch

(start-stop)

I+X Issue

(start-stop)

M MEM

ACCESS (clock)

W CDB-Write

(Complete) (clock)

C Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2 3 4 5

1 MUL.D F4,F2,F0 1-13 5-12 13 14

1 L.D F6,400(R1)

2) (POINTS 17/40) The test-and-set method is the simplest synchronization mechanism and it

is available in the large majority of commercial shared-memory machines. Such mechanism

is based on the atomic exchange operation EXCH that consists in loading the old value at a

given address and store into the same address a new value. The “lock” mechanism is in turn

implemented upon such atomic operation by spinning on a specific memory address until the

lock is open (the returned value is a zero, meaning “unlocked”, instead of a one meaning

“locked”). The following code represent a possible implementation:

LOCK CODE:
 tas: ADDI R2, R0, 1

 lockit: EXCH R2, 0(R1)

 BNE R2, R0, lockit

UNLOCK CODE:
 unlock: SW R0,0(R1)

Let’s consider a situation in which three processors (P0, P1, P15) that try to lock the address

0x100 in a machine having 16 processors. Assume an MSI coherence protocol and the cache

contents represented in figure. The bus-transaction costs are:

• Creadblk=100, Ccache-to-cache=70, Cinvalidate=15, Cwrite-back=10.

For the sake of simplicity, assume also that the critical sections last 1000 cycles.

Assuming that the processors acquire the lock in the order P0→ P1→P15 and given the initial situation of caches and memory represented above,

calculate: a) how many bus transactions are there; b) how many memory stall cycles for each of the processors are necessary before acquiring the lock.

3) (POINTS 6/40) Calculate the PARALLELISM, by using WORK e

SPAN, for the following Cilk implementation of the recursive

Fibonacci code in case of n=5.

int fib(int n) {

 if (n < 2) return;

 int x, y;

 x = cilk_spawn fib(n-1);

 y = fib(n-2);

 cilk_sync;

 return x+y;

}

• (POINTS 17/40) Consider the following snippet of code

running on a processor that uses the Tomasulo's algorithm to

perform the dynamic scheduling of instructions. The program

performs the operation Y=aX/Y on a vector of 100 elements.

Initially, R1 = 0 and F0 contains the value of the constant ‘a’.

etic: L.D F2, 0(R1) ; read Xi

 MUL.D F4, F2, F0 ; multiply a*Xi

 L.D F6, 400(R1) ; load Yi

 DIV.D F6, F4, F6 ; a*Xi/Yi

 S.D F6, 400(R1) ; store Yi

 ADDI R1, R1, 8 ; update R1

 SGTI R3, R1, 800 ; R1 >? 800, result in R3

 BEQ R3, R0, etic ; continue to loop if false

C
o

m
m

o
n

 D
a

ta
 B

u
s

(I-cache

Access) (Decode)

Regs

WRITE-BACK

Address
Effective

D-Cache 1 D-Cache 2

(DISPATCH) (ISSUE+EXECUTE)

AL RS

(Complete)

2 RSFD

3 RSFM

3 RSFA

2 RSLS

2 RSAL

2 RSB

5 ELEMLQ

5 ELEMSQ

F D P WI+X

LS FU

1

B RS

B FU

+

INTEGER
ADDER

+

1
AL FU

INTEGER
ADDER

+

LQ

SQ

1

M RS

FA FU

FLOATING POINT
ADDER

. + .

1

FM FU

FLOATING POINT
MULTIPLIER

. * .

FA RS

FM RS

1
FD FU

FLOATING POINT
DIVIDER

. / .

FD RS

HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010

SOLUTION REVISED 16-10-2024

EXERCIZE 1:

Iter. Instruction P: Dispatch

(start-stop)

I+X:

Issue+Exec

(start-stop)

M: MEM

ACCESS

(clock)

W: CDB-write

(Complete)

(clock)

C: Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2-2 3 4 5

1 MUL.D F4,F2,F0 1-13 5-12 13 14 I waits F2 from 1/L.D

1 L.D F6,400(R1) 2-5 3-3 4 5 15

1 DIV.D F6,F4,F6 2-29 14-28 29 30 I waits F4 from 1/MUL.D

1 S.D F6,400(R1) 5-6 6-6 30 31 P waits LS-RS,M waits F6 from 1/DIV.D

1 ADDI R1,R1,8 5-7 6-6 7 32

1 SGTI R3,R1,800 6-9 8-8 9 33 I waits R1 from 1/ADDI

1 BEQ R3,R0,etic 6-10 10-10 34 I waits R3 from 1/SGTI

2 L.D F2,0(R1) 7-10 8-8 9 10 35

2 MUL.D F4,F2,F0 7-21 13-20 21 36 I waits F2 from 2/L.D & MUL-FU avail.

2 L.D F6,400(R1) 8-11 9-9 10 11 37

2 DIV.D F6,F4,F6 8-44 29-43 44 45 I waits F4 from 1/MUL.D

& DIV-FU avail.

2 S.D F6,400(R1) 11-12 12-12 45 46 P waits LS-RS,M waits F6 from 2/DIV.D

2 ADDI R1,R1,8 11-14 12-12 14 47 CDB waits bus avail.

2 SGTI R3,R1,800 12-16 15-15 16 48 I waits R1 from 2/ADDI

2 BEQ R3,R0,etic 12-17 17-17 49 I waits R3 from 2/SGTI

3 L.D F2,0(R1) 13-17 15-15 16 17 50 CDB waits bus avail.

3 MUL.D F4,F2,F0 13-30 21-28

30 51
I waits F2 from 2/L.D & MUL-FU avail.

CDB waits bus avail.

3 L.D F6,400(R1) 14-18 16-16 17 18 52 LS-FU avail.

3 DIV.D F6,F4,F6 30-59 44-58 59 60 P waits DIV-RS available,

I waits DIV-FU avail.

3 S.D F6,400(R1) 30-31 31-31 60 61 M waits F6 from 3/DIV.D

3 ADDI R1,R1,8 31-33 32-32 33 62

3 SGTI R3,R1,800 31-35 34-34 35 63 I waits R1 from 3/ADDI

3 BEQ R3,R0,etic 32-36 36-36 64 I waits R3 from 3/SGTI

