HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010

MATRICULATION NO.

(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME
REVISED 16-10-2024 FIRST NAME
: : : F D P X w
. (POINTS 17/40) Consider the following snlppf:t of colde oAt ISSUESEXECUTE) (Complete)
running on a processor that uses the.Tomasplo s algorithm to || FLOATING PONT 3 |
perform the dynamic scheduling of instructions. The program — | — ovIDER JFD "
performs the operation Y=aX/Y on a vector of 100 elements. . Rsr: - 2 RSy,
Initially, R1 = 0 and FO contains the value of the constant ‘a’. :[FLOATING POINT) — 3 RSey
j_i JFM Fu| || gg:m
(l-cache FA Rsrf A LS
etic: L.D F2, 0(R1) . read Xi Access) (Decode) 5 FLOA;IDV\IE?E;D\NT > ; EEAL
MUL.D F4, F2, FO ; multiply a*Xi e FAFU o 8
L.D F6, 400 (R1) ; load Yi : = : 5ELEM,q
DIV.D F6, F4, F6 ; a*Xi/Yi RS Effective a2 5 ELEMgq
s.D F6, 400 (R1) ; store Yi] _:@Address ID-Cache 1| | D-Cache 2 L g
ADDI R1, R1, 8 ; update R1 Regs >4 | b | w
SGTI R3, R1, 800 ; Rl >? 800, result in R3 = =
BEQ R3, RO, etic ; continue to loop if false
A rRsr 'sQ LS FU i
sl | — INTEGER —>{
- ADDER
= ‘ ALFU |||
BRS[T] M
15/ INTEGER —
L ADDER
[+ BFU
WRITE-BACK — -
Working hypothesis:

« the pipeline implements a dual-dispatch policy
« the instructions after a branch are executed speculatively and predicted ‘taken’
* high-performance fetch breaks after fetching a branch

« the issue stage (I) calculates the address of the actual reads and writes
* reads require 1 clock cycle; writes require 1 clock cycles

* when accessing memory (M), writes have precedence over reads and must be executed in-order

« there is a single CDB

« dispatch stage (D) and complete stage (C) require 1 clock cycle
« there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition

» the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
« the load buffer has 5 slots
« the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)
« the rest of the processor and has the following characteristics

Type of Functional Unit

No. of Functional Units

Cycles for stage [+X

No. of reservation stations

Integer (effectivi

e addr.)

Integer (op. A-L)
Integer (branch calc.)

FP Adder
FP Multiplier
FP Divider

1
1
1
1
1
1

—_ 00 A =

5

N W W N NN

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.

Iter. Instruction P disPatch [+X Issue M MEM W CDB-Write C Commit Comments
(start-stop) (start-stop) ~ ACCESS (clock) (Complete) (clock) (clock)
1 L.D F2,0(R1) 1-4 2 3 4 5
1 MUL.D F4,F2,F0 1-13 5-12 13 14

1 L.D F6,400(R1)

For the sake of simplicity, assume also that the critical sections last 1000 cycles.

2) (POINTS 17/40) The test-and-set method is the simplest synchronization mechanism and it |0 & P15 &
is available in the large majority of commercial shared-memory machines. Such mechanism \2,0&0,:;‘9 @\\D“z@\”g
is based on the atomic exchange operation excH that consists in loading the old value at a & SF
given address and store into the same address a new value. The “lock” mechanism is in turn | ® };J? JIESAD Boj 110000 10 B Bt il Rl R
. B1|S (108 |00:08 B1|M|128 | 00|68 B1|S | 108 |00:08
implemented upon such atomic operation by spinning on a specific memory address until the | _ —-———-— s P ey wel 1o oo 70
lock is open (the returned value is a zero, meaning “unlocked”, instead of a one meaning BSL @ [0 0 2 o) iel| oo s g3 | na |00 10]
“locked”). The following code represent a possible implementation: n [
LOCK CODE: I |
tas: ADDI R2, RO, 1
lockit: EXCH R2, 0(R1) e
BNE R2, RO, lockit —
UNLOCK CODE: b -
unlock: SW RO,0(R1) o
Let’s consider a situation in which three processors (PO, P1, P15) that try to lock the address I
0x100 in a machine having 16 processors. Assume an MSI coherence protocol and the cache 120 | 00 20
contents represented in figure. The bus-transaction costs are: a0 ice
e Creadblk=100, Ccache-to-cache=70, Cinvalidate=15, Cwrite-back=10. i

Assuming that the processors acquire the lock in the order PO> P1->P15 and given the initial situation of caches and memory represented above,
calculate: a) how many bus transactions are there; b) how many memory stall cycles for each of the processors are necessary before acquiring the lock.

3) (POINTS 6/40) Calculate the PARALLELISM, by using WORK e
SPAN, for the following Cilk implementation of the recursive
Fibonacci code in case of n=5.

int fib(int n) {

if (n < 2) return;

int x, y;

x = cilk spawn fib(n-1);

y = fib(n-2);
cilk_sync;
return x+y;

HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-01-2010
SOLUTION REVISED 16-10-2024

EXERCIZE 1:
Iter. Instruction P: Dispatch [+X: M: MEM W:CDB-write C: Commit ~ Comments
(start-stop) IssuetExec ~ACCESS (Complete) (clock)
(start-stop) (clock) (clock)
1 L.D F2,0(R1) Cil4) 22 3 4 5
] MUL.D F4,F2,F0 /T3 (5-12 _ 14 I waits F2 from 1/L.D
| L.D F6400(RI) [25 33 4 (5 15
] DIV.D F6,F4,F6 \ 229 (142800 (29 30 I waits F4 from 1/MUL.D
] S.D F6,400(R1) 5.4 6-6 300 /|| 31 P waits LS-RS,M waits F6 from 1/DIV.D
] ADDI RI,RL,8 57 66 7 32
1 SGTI R3,R1,800 6-9 8-8 4 9 33 I waits R1 from 1/ADDI
1 BEQ R3,R0,etic 610 10-167 / || 34 I waits R3 from 1/SGTI
5 L.D F2,0(R1) (7-10) 8-8: 9 100 35
7 MUL.D F4,F2,F0 / 721 13-20 1 36 I waits F2 from 2/L.D &
2 L.D F6,400(R1) | 8] 9.9) 37
2 DIV.D F6,F4,F6 \ 8-44 (29-43 44 45 I waits F4 from 1/MUL.D
7
2 S.D F6,400(RL) |[_[2 12-1Z 45 / 46 P waits LS-RS,M waits F6 from 2/DIV.D
2 ADDI RI1,RL,8 11-14 12-12| 14 47 CDB waits bus avail.
2 SGTI R3,R1,800 12- 15 1 48 I waits R1 from 2/ADDI
2 BEQ R3,R0,etic 12:17 /17-f7/ Y 49 I waits R3 from 2/SGTI
3 L.D F2,0(Rl) 13-17 / lg'iS 4ﬁ,{l 50 CDB waits bus avail.
4 I waits F2 from 2/L.D
3 MUL.D F4,F2,FO 13'3//21'28 30 >l CDB waits bus avail.
3 L.D F6,400(R1) 14_’&(16-15 17 18 52
3 DIV.D F6,F4,F6 30-59 44-58 /Q?) 60 P waits DIV-RS available,
s.0 F6,400(r1) 308 3131 60 6l M waits F6 from 3/DIV.D
ADDI RI1,RI,8 31-33 32-32 62

SGTI R3,RI,800 31-35 34-344— (35 63 I waits R1 from 3/ADDI

W W |W W

BEQ R3,R0,etic 3236 36364 64 I waits R3 from 3/SGTI

