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Abstract— With the potential of overcoming the memory and
power wall, the many-core/multi-thread has become a trend in
processor design area. However, this architecture is far from
ripeness because it also companies with many challenges such as
scalability and larger architecture design space compared with
mono-core architectures. In many-core design space, Data-Flow
based architectures are alternatives that deal with concurrency,
long memory latencies, and synchronization stalls efficiently.
Nevertheless, even in this sub-area, there are still a lot of factors
affecting the scalability and performance of the architecture. In
this paper, we explore the design trade-offs for Decoupled
Threaded Architecture (DTA) which is a data-flow many-core
architecture. By using a well known bio-informatics benchmark,
ClustalW, we evaluate various DTA configurations with different
number of synchronization and execution pipelines. We find that
the configuration which consists of two synchronization pipelines
(SP) and one execution pipeline (EP) for each processing
element(PE) achieves almost the same performance as the
configuration consisting of two SPs and two EPs for each
processing element. By employing the former configuration, we
can save 32.5% of the area required for each DTA processing
element.

Keywords-Multi-threaded;Many-core;Scalability; Programability;
Dataflow architecture.

l. INTRODUCTION

Due to the limited performance gains from mono-core
architectures, the industry has already shifted gears to deploy
architectures with multiple cores and threads [22]. Although
multi/many-core  architectures  promise a  significant
performance potential, it is not trivial to obtain performance
improvement from these architectures. Besides traditional
difficulties, new challenges such as scalability and
programmability are arising. Further, the design space of
multi/many-core architectures is much larger than that of
mono-core architectures, leading more difficulties to design
them. The Data-Flow architecture [2] is an alternative that
deals with concurrency, long memory latencies, and
synchronization stalls efficiently. We have designed a multi-
threaded architecture named Decoupled Threaded Architecture
(DTA) based on Data-flow architecture [1].

Decoupled Threaded Architecture (DTA) is a multi-
threaded architecture based on the Scheduled Data Flow (SDF)
execution paradigm. The way in which data is communicated
among threads and the decoupling of memory accesses from
execution are the main differences between DTA/SDF and
other multithreaded programming models. Data is exchanged

between threads via frames which are portions of local memory
assigned to each thread. Each thread is associated with a
Synchronization Counter (SC) that represents the number of
input data needed by the thread. This counter decreases each
time when a datum arrives in the thread's frame. Once it
becomes zero, which means all needed input data are ready, the
thread is ready to execute. In this way, DTA provides dataflow
at thread level and a non-blocking synchronization. This is one
of the key differences between the DTA and the original Data-
flow architecture which provides dataflow at instruction level.

In this paper, we provide a case study for the design trade-
off our previously proposed DTA architecture. We employ the
well-known bio-informatics application Clustal-W to evaluate
various DTA configurations. Especially, we look for the
optimal combinations of the number of synchronization and
execution pipelines. We show that the configuration of 2 SPs
and 1 EP achieves the same performance as that of 2 SPs and 2
EPs. Therefore, we can save 32.5% of the area required for
each DTA processing element by using the former
configuration.

The rest of this paper is organized as follows. Section Il
briefly describes an overview of the DTA architecture. Section
Il provides an analysis of the benchmark Clustal-W. The
experimental methodology is given in Section IV and Section
V provides the results and analysis. Section VI surveys the
related work and we conclude the paper in Section VII.

Il.  OVERVIEW OF THE DTA ARCHITECTURE

A. The Execution Model

DTA executes TLP (Thread Level Parallelism) activities
of a program — portions of a program that exhibits Thread
Level Parallelism (TLP). A Compiler (or a programmer)
identifies parallel parts of the program and marks them as TLP
activities. When these activities are encountered during
execution, they are launched to the DTA hardware where they
are executed in parallel. For example, in the DTA
implementation on the Cell processor [3], TLP activities are
launched by the general purpose processor (Power PC) to the
DTA-enabled Synergistic Processor Elements that execute
DTA threads.

The DTA architecture decouples the memory accesses
from execution. This helps the threads exchange data in the
data flow manner. To achieve this, a new memory concept,
frames which are portions of local memory assigned to each
thread, is introduced. One thread has one frame which is used



to store the input data for the thread. In order to indicate
whether all the input data needed by a thread is in the
corresponding frame, the DTA architecture employs a
Synchronization Counter (SC). This counter represents the
number of input data needed by a thread. When one datum of
a thread arrives at its frame, the SC of it decreases by one.
Once a SC becomes zero, the corresponding thread is ready to
execute. The execution of each DTA thread can be split into
three phases: load, execution, and store. In the load phase,
input data are loaded from the frame memory; in execution
phase, the thread is executed; in the store phase, the outputs of
the thread are written to the frames of other threads.
Preemptive execution is not allowed and a thread voluntarily
releases the processor each time when it switches between
phases. Therefore, the memory access of a thread is decoupled
from the execution of it.

An example of thread synchronization in DTA is shown in
Figure 1. Thread thO executes first and creates threads thl, th2
and th3. Since the thread th1 needs two input variables a and
b, its SC is set to 2 when the thread is created. Similarly, the
SCs of threads th2 and th3 are set to 1 and 2 respectively at the
beginning. When thO executes the first STORE instruction
(used to send data to another thread), it will store a into the
frame of the thread th1. Meanwhile, the SC of thl is decreased
by 1. After the second STORE, the SC of thl becomes 0 and
thl is ready for its execution. When the third STORE of thO
completes, th2 is also ready and both threads (th1 and th2) can
run in parallel if there are two cores available. When their
execution completes, the output data are stored into the frame
of thread th3.
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Figure 1. An example of thread synchronization

To overcome the long wire delay issue [4], the DTA
architecture clusters resources into nodes, a different approach
from the SDF architecture. Figure 2 shows the overview of our
DTA architecture. As shown in Figure 2, each node contains
several processing elements (PE) that are interconnected via a
fast and simple intra-node network. Each node is dimensioned
so that all PEs in a single node can be synchronized by using
the same clock. The Nodes are connected by a slower inter-
cluster network.

B. The DTA Architecture

The DTA architecture employs two kinds of schedulers to
schedule workloads among the computing elements:
Distributed Scheduler Elements (DSEs) and Local Scheduler
Elements (LSEs), which are illustrated in Figure 2. Each PE
contains one LSE that manages local frames and forwards
request for resources to the DSE. For example, when a remote
store arrives at a local frame of a thread, the LSE decreases the
SC of the thread and stores the datum to the frame. When a PE
requests a new frame, the request is forwarded to the DSE.
Each node contains one DSE that balances the workloads
among processors in the node. The elements of the schedulers
communicate with each other by using messages [1].
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Figure 2. DTA architecture design. A processing element
(PE) is composed of many execution pipelines (EP) and
synchronization pipelines (SP) with common register sets,
frame, data, and instruction cache. Processing elements
are grouped by nodes to break scalability limits.
There are two types of memory in the DTA architecture:
e Frame Memory (FM). It is private for each thread
and contains input data for the thread;
e Global Memory (GM). It is shared among threads
and is accessible via the inter-cluster network;
Both frame memory and global memory use a direct- mapped
cache of 32KB (no additional overhead is considered in case
of cache hits) to reduce the memory latency. Reading from
frame memory is always faster than reading from global
memory. On the other hand, writing data to both types of
memory is always non-blocking since the LSEs take the write
request and process it. The PE is free to continue executing as
soon as possible after the request is passed to a LSE. In order
to reduce the memory latency, DTA programs tend to use the
frame memory as much as possible.

C. The Processing Element

The processing elements in DTA can be either off-the-shelf
processors or specialized DTA processors with separate
pipelines for different phases of each thread. When off-the-
shelf processors are used, they need to be modified in order to
include LSE, frame memory (usually cache or local store is



used [3]) and several DTA-specific instructions which are
used to manage the lifetime of threads and exchange data
among threads. In order to extract precise statistic information
for each phase of a thread’s execution, we use DTA-specific
processing elements in this study.

Each PE contains several pipelines, a register set, a frame
memory, and a Local Scheduler Element. There are two types
of pipelines in each PE: Synchronization Pipeline (SP) and
execution pipeline (EP). SP is responsible for executing load
and store phases. EP is responsible for the execution phase of
a thread. All pipelines in the PE share the same register set.
When a thread starts to execute, the LSE assigns one of the
available register sets to it. Then the thread passes trough
different pipelines to execute its load, execution and store
phases. When the thread finishes its execution, its frame and
register set become available for other threads.

All requests that originate from a PE (either for memory
accesses or for new resources) are handled by its LSE. If the
request is local (mapped to internal frame memory), then it is
served immediately. On the other hand, in case of a request for
remote resource (new frame or a remote memory location), the
LSE forwards the request to the DSE (in case of a request for a
new frame or a store to a remote frame) or to the main
memory (in case of a request for a remote memory location).
In the both cases, the request must pass through intra-cluster
network, causing a longer latency.

D. Terminologies

In this paper we use the following terminologies to

differentiate the types of threads:

e Pthread: a thread created by an application [5].
These threads are specified by the programmer and
can have arbitrary length.

e DTA-thread: a sequence of load, execution and store
phases. Each pthread contains many small DTA
threads that are generated by the compiler.

IIl.  THE ANALYSIS OF CLUSTAL-W

In molecular biology, Clustal-W [6] is an important
program for the simultaneous alignment of nucleotide or
amino acid sequences. It implements the most widely used
approach of multiple sequence alignments that use a heuristic
search known as progressive alignment. However, the
progressive alignment algorithm suffers a high computational
complexity and consequently it may take a lot of time to
complete. A traditional technique to speedup this task is to
parallelize the application as much as possible. As a result, the
progressive alignment algorithm is a perfect candidate to fully
utilize the machine resources and to stressfully test the overall
performance as well as the scalability of massive parallel
systems.

In this work, we use the parallel implementation of Clustal-
W that comes from the BioPerf [7] benchmark suite. This
version of Clustal-W is divided in three phases:

1) The first phase, pair-wise alignment, takes between
60% and 80% of the execution time in a traditional
uni-processor machine.

2) The second stage forms a phylogenetic tree using the
Neighbor-Joining  algorithm with the aligned
sequences generated at the previous step.

3) The third step progressively aligns the sequences
according to the tree branching order obtained at the
second step.

In order to better understand the performance of Clustal-W,
we characterize it by using Oprofile [8]:

Counted CPU_CLK_UNHALTED events
samples % image name
526230 50.0853 clustalw-smp
271232 25.8152 clustalw-smp
215633 20.5234 clustalw-smp

symbol name
parallel
pdiff_reverse
pdiff_forward

15849 1.5085 clustalw-smp pdiff
14632 1.3926 clustalw-smp calc_prfl
2535 0.2413 clustalw-smp diff

1731 0.1648 clustalw-smp prfalign
1534  0.1460 clustalw-smp aln_score

The above profiling results show that the pairwise alignment
— function parallel() — is the most CPU-consuming part of
the execution. Over 50% of execution time spent in it. Hence,
we focused our analysis on this function.

IV. EXPERIMENTAL METHODOLOGY

A. The Methodology

As a starting point, we use the Clustal-W implementation
that is parallelized at the application level by using Pthreads
primitives. In order to better utilize the underlying
architecture, the pthread library was implemented by using
DTA assembly primitives. Whenever a new pthread is
requested in the code, the compiler creates a DTA thread to
exploit the dataflow execution model. Instead of relying on
locking and  semaphores, pthread  primitives for
synchronization are written to rely on the synchronization
counters and the dataflow communications that are supported
by the DTA hardware.

The standard ANSI-C version of Clustal-W is translated
into DTA assembly code by using a modified Scale [18]
compiler. This compiler is extended with a DTA backend and
custom implementation of libraries for the generic 1/O
operations (open(), read(), write(), . . . ). The tests are
executed on a DTA simulator which is based on the code of
sdfsim-3.0.0 [19].

For the input dataset, we use the standard input dataset from
the BioPerf suite, 1290.seq (66 sequences of length almost
1100). The input is replicated 32 times to create at least
512 workers via pthread create() and to avoid “empty”
worker threads. All the created threads have a non-empty input
sequence to align. The total number of sequences to be aligned
during each run is 66 x 32 = 2112,



B. The Decomposition of the code

Since the main goal of this work is to better understand
the TLP exploitation from the point of view of the
architecture, we focused on the statistics for the highlighted
section of the code (see Section Il1). This section starts after
all threads are created. Namely, it starts after the call to the
function pthread_cond_broadcast().

As mentioned before, the main idea is to allow the DTA to
coexist with other types of processors in the system (e.g.
general purpose processors) and to launch only the parallel
part of the code to a dedicated DTA hardware. In this way, the
General Purpose Processor (GPP) executes only for the
sequential part of the application. The GPP can be optimized
to exploit the available Instruction Level Parallelism (ILP) of
the program that is not suitable for DTA. On the other hand,
the TLP-optimized DTA hardware runs the threaded portion of
the code. By analyzing the code and the arguments of
pthread_create() function, it is fairly easy to identify the
portion of the code that has the high degree of parallelism.
Therefore, even at compile time, we can decide how to split
the code into sequential and parallel parts.

V. RESULTS AND ANALYSIS

Firstly, we estimate the instruction mix that is created at
runtime:

Total number of instructions:

Total frame-memory references:

2,323,534,075
1,097,224,437

Total data-memory reference: 91,925,906
Total READs from frame: 548,612,219
Total WRITES to frame: 548,612,218
Total READs from memory: 78,648,743
Total WRITEs to memory: 13,277,163
Total number of DTA-threads created: 50,259,676
Instructions per DTA-thread (average): 47.2305

As we can see from the dynamic statistics, 51.12% of the
instructions are memory accesses but only 3.96% of them are
the data memory access. The 96.04% of memory accesses
goes to the frame memory and these accesses are used for the
communication among DTA-threads. This is evidence that the
compiler is able to generate many smaller DTA threads inside
each thread created by pthread library. Since the frame
memory locates near the processor, the advantage of DTA is
to leverage this memory for communication among threads
instead of using other ways of communication (e.g. function
calls with a stack frame).

The second set of experiments test the scalability of several
different configurations of DTA while varying the miss
latency. The results are shown in Figure 4 and Figure 5. In the
DTA architecture, the stalls in the pipelines are only a
consequence of LOAD misses. These stalls delay the fetch and
completion of future instructions. Therefore, only the
Synchronization Pipelines are affected by pipeline stalls.
Increasing the memory latency reduces the contribution of the
EPs to the total execution time. On the other hand, the activity
of SPs strongly influences the performance in terms of total
execution time and speedup. This can be seen from the graphs
for execution time since the configuration with 2 SPs and 1 EP

performs almost as well as the configuration with 2 SPs and 2
EPs. Also, increasing the memory latency gives better speedup
(but the execution time increases also) since there is a higher
probability to use more SPs.

When the latency is increased, the amount of stalls in SPs,
as shown in Figure 6, is also increased so do the number of
threads in the system as illustrated in Figure 7. The number of
threads is increased because there are many new threads are
waiting. If we have a longer stall in a pipeline and a new
DTA-thread arrives, there is a less probability to find an
available SP that can start to execute the load phase of the
thread. This means that the benefit of increasing the number of
SPs is greater than increasing the number of EPs when the
memory latency increases.
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This fact is due to the memory latency issue and execution
model. Statistically, at any time of the execution of a program,
2/3 of the available DTA-threads need to be served by a SP
(due to load and store phases) and only 1/3 of the threads need
an EP to continue their execution. This is also in line with the
obtained results on execution time and speedup that are
discussed above. Hence, in a dataflow base multithreaded
architecture, it is possible to get the same performance by
using a cheaper configuration, namely, by decreasing the
number of architectural elements that are dedicated to
calculations (EPs) and by increasing the number of
architectural elements dedicated to communication (SPs).

To quantify the area saved by decreasing the number of
EPs, we evaluated the number of transistors and the required
area for all configurations that we used in our experiments.
Our method is based on the analytical method provided by the
"SimpleScalar directed estimation tool" [20]. This tool takes
the number of functional units (such as ALUs, Load/Store
units,...) as input and produces the estimate of required
transistor count and the area. The results are displayed in
Table 1. As shown in Table 1, the "1 EP + 2 SPs"
configuration saves about 32.5% of the eara with respect to the
"2 EPs + 2 SPs" configuration while keeps the same



performance,
architecture.

leading to a space and energy efficient
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latency. The memory latencies are 1, 25, and 50 clock cycles
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VI. RELATED WORK

Several researchers in the past have studied the
performance of multiple versions of parallel Clustal-W in a
wide range of different multi-core architectures. The solution
presented by [9] uses message-passing libraries on a PC
cluster (ClustalW-MPI). Besides the software approach, new
approaches that are using reconfigurable hardware (such as
FPGA) have been presented [10]. Vandierendonck et al. [11]
explored the performance of a Clustal-wW implementation
optimized for the Cell BE architecture (ClustalW-Cell). Liu et
al. also explored the optimizations of Clustal-W using the
GPU acceleration of nvidia GeForce 7800 GTX (ClustalW-
GPU) [12].

From the hardware perspective many decoupled
architectures have appeared in the past few years. Speculative
Data- Driven Multithreading [13] is an architecture that is
based on decoupling principle. This architecture identifies
miss streams, i.e. streams of instructions that are likely to
cause cache misses and executes them in a multithreaded
fashion in order to perform pre-fetching. HiDisc (Hierarchical
Decoupled Instruction Stream Computer) [14] is an
architecture that reduces memory latency by pre-fetching at
both hardware and software level. Pre-fetching is
accomplished by separating the instruction stream into one for
regular execution and one for memory accesses.

Moreover, multi-core/many-core architectures have
gained the most attention in the industry recently. IBM
Cyclops-64 (C64) [15] is a multi-core-on-a-chip processor that
consists of 80 processors (or cores). Each processor has two
SRAM memory banks that can be configured either as
scratchpad or global memory. Plurality [16] is a multi-core
system that uses a pool of RISC processors with uniform
memory, hardware scheduler, synchronizer and load balancer.
SUN Microsystems UltraSPARC T2 [17] is a multithreading
multi-core chip capable of running 64 threads at the same
time. The main difference between the existing architectures

and DTA is that DTA is a multithreaded architecture that uses
the scheduled dataflow programming model and decouples

TABLE |
AREA AND TRANSISTOR USAGE ESTIMATION:
PIPELINES AND DIFFERENT PROCESSING ELEMENTS

Element Number of Transistors | Area (in M 22 )
1EP 419,597 685.47

18P 225,554 368.49
1PE=2EP+2SP 1,290,302 2,107.92
1PE=1EP+2SP 870,705 1,422.45

Average pipeline usage

200

' EP‘runniﬁg —
SP running ===
SP stall m—

Usage (%)

1 2 4 8 16 32
PEs

@)

Average pipeline usage

64 128 256 512

200

' EP‘runniﬁg —
SP running ===
SP stall m—

150

100

Usage (%)

50

1 2 4 8 16 32
PEs

(b)

Average pipeline usage

64 128 256 512

200

' EP‘runniﬁg —
SP running ===
SP stall m—

150

100 -

Usage (%)

50

1 2 4 8 16 32
PEs

(©

64 128 256 512

Figure 6. Average pipeline usage (IPE =1 EP + 1 SP)
with a Load miss latency of 1, 25, and 50 clock
cycles, denoted by (a), (b), and (c). Total usage can be
greater than 100% when EP and SP code are executed
in parallel
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Figure 7. Average number of DTA-threads running in EPs and
SPs using different LOAD miss latencies: 1, 25, 50 clock
cycles(ticks)

the memory accesses from the threads’ execution.

VII. CONCLUSION

This paper analyzes the tradeoffs in design of a multi-
threaded architecture, and their effect on the exploitation of
the Thread Level Parallelism. By using the bio-informatics
application Clustal-wW as a benchmark, we evaluate our
Decoupled Threaded Architecture (DTA) with different
number of architectural elements that are dedicated for
computation and for communication among threads.
We have experimentally verified that the contribution of the
hardware dedicated to communication (Synchronization

Pipelines — SPs) is much greater than the contribution of the
hardware dedicated to computation (Execution Pipelines
— EPs). This shows that our architecture is based on the
coarse-grained dataflow execution model that emphasizes the
communication in a producer-consumer fashion. We found
that the configuration in which each Processing Element (PE)
is composed of 1 EP and 2 SPs is able to achieve the
performance which is very close to that of the configuration
with “2EP + 2SP”. This can save the area of each PE and
obtain benefits in terms of power significantly.
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