
Trace Factory
Generating Workloads for Trace-Driven Simulation
of Shared-Bus Multiprocessors

Roberto Giorgi, Cosimo Antonio Prete, Gianpaolo Prina, and Luigi Ricciardi
University of Pisa

Amajor concern with high-performance general-purpose
workstations is to speed up the execution of commands,
uniprocess applications, and multiprocess applications with
coarse- to medium-grain parallelism. To that end, a simple
extension of a uniprocessor machine such as a shared-bus,

shared-memory architecture can be employed.1 Both kinds of machines
generally use the same operating-system model (a Unix-like multitask-
ing processing environment is the most common solution), and the same
application can execute on these machines without recoding.

However, an intrinsic limitation of the shared-bus architecture is the
low number of processors that can be connected to the shared bus. When
this number exceeds a critical value (the upper limit for current technol-
ogy is approximately a few dozen units), the system’s global performance
drops drastically because of bus saturation. A major cause of this drop is
coherence-related overhead. When two or more processors store a copy
of the same memory block in their respective caches and one of them per-
forms a write operation on a location in that block, a set of bus actions
(induced by a coherence protocol2) is necessary to guarantee that every
subsequent read operation by any processor can get the up-to-date value
of the modified location.

Typically, researchers use simulation to investigate how to improve
the performance of such machines. In particular, trace-driven simula-

54 1063-6552/97/$10.00 © 1997 IEEE IEEE Concurrency

Trace Factory
produces traces
representing significant
real workloads
consisting of a flexible
set of commands and
uniprocess and
multiprocess user
applications. The
authors evaluate its
accuracy and show
how it can be used to
evaluate and compare
the performance of five
coherence protocols.

Performance Evaluation

October–December 1997 55

tion3,4 offers a good trade-off between speed, accuracy,
and flexibility. A key point of this methodology is to find
traces (a sequence of memory references generated by
the running program) that both represent typical oper-
ating conditions and include all information potentially
needed for an accurate simulation of the system.5,6 (See
the sidebars for background on performance evaluation
and trace generation).

We’ve developed a methodology and a set of tools
(called Trace Factory) to generate traces for the perfor-
mance evaluation of shared-bus, shared-memory multi-
processor systems. Trace Factory’s hybrid methodol-
ogy consists of

• tracing user references by means of a standard trac-
ing tool,

• stochastically generating the kernel references, and
• simulating process scheduling and virtual-to-physical

address translation.

Moreover, Trace Factory doesn’t employ a standard
playback of traces during the simulation phase. In-
stead, it uses enhanced trace-driven simulation in
which the memory hierarchy conditions the reference
production and the other kernel activities described
above. This approach lets Trace Factory provide the
accuracy crucial to the trace-generation and trace-

During recent years, academic, re-
search, and commercial groups and
individuals have developed many mul-
tiprocessor performance-evaluation
methodologies and tools. These tools
fall into two main categories: those
that help tune applications executing
on a specific computer, and those that
evaluate different architectural solu-
tions while varying software features.

Important initiatives for high-per-
formance computing, such as those
from NASA, DARPA, and the NSF,
have highlighted the need for tools in
the first category. (See the November
1995 Computer and Winter 1995 IEEE
Parallel & Distributed Technology.) Other
recent tools range from simple software
extensions of the processor- or operat-
ing system-monitoring software, such
as PatchWrx1, to more sophisticated
and articulated environments, such as
AIMS (automated instrumentation and
monitoring system).2 Companies such
as DEC, Intel, CRI, and Convex have
developed ATOM (analysis tools with
OM), ParAide, MPP Apprentice, and
CXpa, respectively, and some acade-
mic projects, such as Paradyn,3 have
become multiplatform performance-
tuning software.

We focus on the second category of
tools, which let computer architects
tune the memory hierarchy and system

parameters by selecting an arbitrary,
ad hoc workload to stress the machine.
The most common strategies4 for such
tools are analytical/stochastic models, com-
plete system simulation, and trace-driven
simulation. These strategies can be clas-
sified on the basis of different metrics,
such as the accuracy of evaluation, cost
of implementation, speed, and flexibil-
ity of the method over a wide range of
architectures.

ANALYTICAL/STOCHASTIC MODELS

This strategy might appear to be the
most flexible and economic solution.5
However, these models typically do
not include all the aspects that charac-
terize cache and program behavior.
So, their low accuracy might be un-
acceptable for a deep evaluation of
complex cache-based systems. This
kind of analysis could be of some use
for quickly estimating system perfor-
mance, before completing the evalua-
tion with a more accurate technique.

COMPLETE SYSTEM SIMULATION

This strategy is the most flexible and
accurate, because it potentially allows a
detailed analysis of all the hardware and
software aspects of a particular archi-
tecture, including the full operating
system. Its main problem is that it
requires a complete model to simulate

the execution of sophisticated software
such as operating systems or multipro-
grammed workloads. Consequently, it
usually incurs a large dilation factor,
especially for high-detail simulations
(such as in the SimICS6 and SimOS7

approaches).
In particular, for multiprocessor

systems, the slowdown scales linearly
with the number of CPUs being sim-
ulated. In the case of SimOS, at the
deepest level of detail, a slowdown fac-
tor in the thousands occurs when sim-
ulating systems with 16 to 32 proces-
sors.7 However, the user can control
the simulation’s level of detail to min-
imize the total simulation time.

Another tool that partially simulates
the operating system activity, MINT8

(MIPS interpreter), provides a set of
simulated processors that run standard
Unix executable files compiled for a
MIPS R3000-based system. MINT
supports spinlocks, semaphores, bar-
riers, shared memory, and most Unix
system calls. Processors generate mul-
tiple streams of memory-reference
events that drive a user-provided
memory-system simulator.

TRACE-DRIVEN SIMULATION

When the performance evaluation’s tar-

Performance evaluation methodologies and tools

(Continued on page 56)

56 IEEE Concurrency

utilization phases of the simulation6 (see the sidebars).
Trace Factory is particularly useful for evaluating a

multiprocessor architecture’s performance related to
different workloads and most of the influencing activi-
ties of the operating system. The designer can evaluate
and tune architectural solutions for coherence proto-
col, cache structure, bus, and memory.

The Trace Factory environment

Trace Factory is an operating environment to create
traces representing a specific user workload executing
on a specific multiprocessor configuration with a par-
ticular kernel behavior. Starting with a set of source traces
including only user references, Trace Factory can pro-
duce complete multiprocessor target traces. Source
traces can be obtained through a tool based on the same
microprocessor that the target system uses.

Trace Factory generates target traces by considering
the source traces, the target-machine configuration (for
example, the number of processors), and the three ker-
nel aspects that most affect global performance:

• Kernel memory references—the reference bursts
caused by each system call and kernel-management
routine.

• Process scheduling—the dynamic assignment of a ready
process to an available processor.

• Virtual-to-physical address translation—the mapping
of virtual addresses produced by a running process
to physical memory addresses.

Trace Factory can simply store the reference sequences
into target-trace files or can supply them to the multi-
processor simulator via synchronous channels. In the
latter case, Trace Factory generates the target trace
according to the on-demand policy: It produces a new
reference when the simulator requests one, so that the
temporal behavior imposed by the memory subsystem
conditions the generation of the trace.

GENERATION OF KERNEL REFERENCES

Kernel references affect performance because they
interrupt the locality of the memory references of the
running process, causing additional cache misses. Our
hybrid approach models the kernel-reference stream
through a stochastic model of references and bursts.4

Trace Factory obtains a process-reference stream
by inserting sequences of kernel references (kernel
bursts) in the user-reference stream (source trace). For
each kernel reference, Trace Factory produces the
area referenced (code or data), the address within the

get is the memory hierarchy and proces-
sor-interconnection subsystem, trace-
driven simulation offers a good trade-
off between speed and accuracy.9–11

This strategy produces a trace (a se-
quence of memory references generated
by the running program) and uses it as
input for a memory-hierarchy simula-
tor. To ensure accuracy, traces must in-
clude both user and kernel references,
and minimal time distortion must be
induced by either the tracing mecha-
nism (during the recording phase) or the
simulator (in the utilization phase). (For
more information, see the sidebar,
“Trace generation.”)

In a previous paper, we proposed the
use of synthetic traces to evaluate and
compare different system architectures
by generating synthetic workloads.9 A
major advantage of synthetic over
actual traces is their flexibility: a syn-
thetic workload is much more control-
lable and can be used to “stress” a sys-
tem. Actual-trace-driven and complete
simulation can then be used to validate
the results in actual conditions.

References

1. S.E. Perl and R.L. Sites, “Studies of
Windows NT Performance Using
Dynamic Execution Traces,” Operat-
ing System Rev., Vol. 30, No. 11, Oct.
1996, pp. 169–183.

2. J.C. Yan and S.R. Surraki, “Analyzing
Parallel Program Performance Using
Normalized Performances Indices and
Trace Transformation Techniques,”
Parallel Computing, Vol. 22, No. 9,
Nov. 1996, pp. 1215–1237.

3. B.P. Miller et al., “The Paradyn
Parallel Performance Measurement
Tool,” Computer, Vol. 28, No. 11,
Nov. 1995, pp. 37–46.

4. V. Milutinovic et al., “Issues in Com-
puter Architecture Performance Eval-
uation: Past Experience and Future
Trends,” Workshop of the Infofest
’97, 1997; http://galeb.etf.bg.ac.yu/
~vm/infofest97/infofest97.html.

5. M.K. Vernon, E.D. Lazowska, and J.
Zahorian, “An Accurate and Efficient
Performance Analysis Technique for
Multiprocessor Snooping Cache-Con-
sistency Protocols,” Proc. 15th Ann.
Int’l Symp. Computer Architecture, IEEE
Computer Society Press, Los Alami-
tos, Calif., 1988, pp. 308–315.

6. P. Magnusson and B. Werner, “Effi-

cient Memory Simulation in SimICS,”
28th Ann. Simulation Symp., IEEE CS
Press, 1995, pp. 62–73.

7. M. Rosenblum et al., “Complete Com-
puter System Simulation: The SimOS
Approach,” IEEE Parallel & Distributed
Technology, Vol. 3, No. 4, Winter 1995,
pp. 34–43.

8. J.E. Veenstra and R.J. Fowler,
“MINT: A Front End for Efficient
Simulation of Shared-Memory Multi-
processors,” Proc. MASCOTS ’94: Sec-
ond Int’l Workshop on Modeling, Analy-
sis, and Simulation of Computer and
Telecommunication Systems, IEEE CS
Press, 1994, pp. 201–207.

9. C.A. Prete, G. Prina, and L. Ricciardi,
“A Trace-Driven Simulator for Per-
formance Evaluation of Cache-Based
Multiprocessor Systems,” IEEE Trans.
Parallel and Distributed Systems, Vol. 6,
No. 9, Sept. 1995, pp. 915–929.

10. S.J. Eggers and R.H. Katz, “Evaluat-
ing the Performance of Four Snoop-
ing Cache Coherency Protocols,”
Proc. 16th Ann. Int’l Symp. Computer
Architecture, IEEE CS Press, 1989, pp.
2–15.

11. R.A. Uhlig and T.N. Mudge, “Trace-
Driven Memory Simulation: A Sur-
vey,” ACM Computing Surveys, Vol 25,
No. 2, June 1997, pp. 128–170.

(Continued from page 55)

October–December 1997 57

selected area, and the kind of access (read or write).
To obtain the parameters that describe our model,

we use a trace that includes kernel references. In par-
ticular, we directly evaluate the probability of code or
data access and of data read or write access by counting
the relative occurrences of events. Concerning the local-
ity of memory references, we evaluate three parameters
for both code and data areas:

• the maximum distance between two consecutive
references,

• the maximum amplitude of the distribution of dis-
tances between two consecutive references, and

• the percentage of backward references over the total
number of nonsequential accesses.

We use these parameters to set up the shape of an empir-
ical function that gives, step by step, the next address to
be inserted into the synthetic kernel-reference stream.4

Two statistics govern the generation of kernel bursts:
the length of each burst and the distance between the
starting point of two consecutive bursts. We measure
the distribution of the kernel-burst length and the dis-
tance between the beginning of two successive bursts
in real traces.

If the tracing tool records the system-call positions, the

burst insertion will be driven by this information collected
in the source traces. This lets us generate more accurate
workloads (for example, considering that the processes
typically exhibit a different number of system calls).

This hybrid methodology introduces approximations
concerning both the generated address and the distri-
bution of kernel bursts. The weight of such error ap-
pears to be somewhat limited, considering that our goal
is the trace generation for performance evaluation of
the memory subsystem.

To estimate the error induced by the synthetic gen-
eration of the kernel-reference stream, we consider a
series of eight processor traces distributed by Carnegie
Mellon University and obtained on an Encore Multi-
max (shared-bus multiprocessor) machine (see Table 1).
These traces represent a wide variety of application
domains; they include both user and kernel references.
The Multimax ran a version of Carnegie Mellon’s Mach
operating system.

Table 2 includes the kernel-access percentages (code,
data, and write) and the statistics concerning the distri-
bution of burst distance and lengths. The table sum-
marizes the distance and length by average value (µ) and
standard deviation (σ).

We employed trace-driven simulation to compare the
results of four situations:

Tracing techniques include hardware
and software solutions. Further classi-
fication is problematic, because each
tool has at least one feature that makes
it unique and precludes it from being
grouped with others.

HARDWARE SOLUTIONS

Hardware monitoring potentially pro-
vides the highest accuracy. With this
technique, Bart Vashaw and Drew
Wilson have used two identical
machines (Encore Multimax 320s)
to collect traces.1 Their procedure
records at full speed the references
generated by the traced machine into
the tracing machine’s memory until
the trace memory is exhausted. Then,
the tracing machine starts storing the
traces. The procedure inserts time
stamps at synchronization points to
allow the correct replay of the col-
lected traces. Its main advantages are
accuracy and the absence of time dis-
tortion and intrusiveness. Its most crit-
ical drawback is that modern processor
technology encourages the adoption

of on-chip caches, so that a large num-
ber of memory references are handled
internally and can no longer be cap-
tured by the hardware tracing mecha-
nism. Other limiting factors are the
high cost of implementation and the
lack of completeness (fragmentation)
of the trace gathered, because of the
limited size of storage buffers. Finally,
traces obtained from a multiproces-
sor machine through hardware tech-
niques cannot be employed for an
exhaustive performance analysis of the
system, because producing traces with
a variable number of processors is
impractical.

SOFTWARE SOLUTIONS

Software tracing methods include
program instrumentation, single-step
execution, and microcode modification.
These methods all suffer to varying
degrees from time dilation because
their tracing mechanisms generate a
heavy overhead. This overhead dras-
tically changes the relative timing of
asynchronous events, resulting in
lower accuracy compared to hardware
approaches.

Program instrumentation
This method adds a set of instructions
to create at runtime the portion of the
trace relative to each basic block (a
sequence of machine-level instructions
not containing branches) throughout
the program. The instrumentation
phase can be activated at either the
source or executable level. The latter
is simpler for the user to handle, but it
is difficult to implement and might not
allow instrumentation of all programs.
On the other hand, instrumentation at
the assembly level is easy, but the user
must have access to the entire source
code. Also, the lack of completeness in
the trace limits the model’s accuracy,
because capturing references of kernel
routines is difficult.

Mptrace,3 Trapeds,4 and TangoLite5

are tracing tools based on program
instrumentation. Mptrace, developed
by Susan J. Eggers and her colleagues
for the Sequent i-386 shared-memory
multiprocessor, collects traces of multi-
threaded parallel programs. It auto-
matically modifies the assembly-

Trace generation

(Continued on page 58)

58 IEEE Concurrency

a. The original CMU traces.
b. The CMU traces deprived of the kernel references.
c. The original traces, with kernel references replaced

by a reference stream generated synthetically on the
basis of each original trace’s statistics, yet preserv-
ing the same position and length of each burst as in
the original traces.

d. The original traces, with kernel references gener-
ated synthetically on the basis of the MP3D statis-
tics, yet preserving the same position of each burst
as in each original trace.

In all these situations, we measure global system
power as GSP = ∑Ucpu, where

and Tdelay is the total CPU delay time caused by waiting
for memory-operation completions. The GSP depends

U
T T

Tcpu
cpu delay

cpu
=

−
× 100

language version of the application,
inserting code to collect traces. Craig
Stunkel and W. Kent Fuchs originally
developed Trapeds for the Intel iPSC/2
hypercube multicomputer. Their orig-
inal version traces both user and kernel
code and performs execution-driven
simulation to avoid large storage costs.
They implemented a later extension on
the Encore Multimax 510, an eight-
node bus-based multiprocessor. To
guarantee the accurate recreation of the
interactions between processors, Tra-
peds uses a timer-based approach. Tan-
goLite, developed by Stephen E. Gold-
schmidt and his colleagues, is a software
instrumentation system for the MIPS
instruction architecture. It supports the
execution-driven simulation of multi-
processor workloads, and it can gener-
ate multiprocessor traces. TangoLite
performs the instrumentation mostly at
the assembly level. It represents the
processes as lightweight threads, and
its scheduling policy guarantees the
chronological simulation of events gen-
erated by different processors.

Single-step execution
This method works with microproces-
sors that allow a program’s execution to
be interrupted after each instruction.
Because kernel routines typically disable
interruptions, this technique usually
cannot capture references generated by
the execution of kernel routines. In the
trace generator implemented by Eggers
and Randy Katz for the Sequent archi-

tecture,6 the tracing mechanism uses
trace-trap facilities to halt at each
instruction and dump trace information,
both for instructions and their operands.

Microcode modification
This technique can be considered
as either a hardware or a software
methodology. We have chosen to clas-
sify it as a software solution because it
causes a slowdown for the processor,
like other traditional software tech-
niques. ATUM (address tracing using
microcode) uses processor microcode
to record references in a reserved part
of the main memory as a side effect of
normal execution.7 Compared with
other techniques, it leads to fewer dis-
tortions and very fast recording (only
10× slowdown). All the system activi-
ties can be observed, with no additional
required hardware. Its disadvantages
include poor flexibility, and the trace
length is limited to the amount of the
memory reserved for the trace storage.

WHICH SOLUTION TO USE?
When the goal is to compare different
architecture solutions, analyzing the
system behavior under predefined and
controlled workloads becomes impor-
tant. So, for trace generation to be
effective,

• traces must represent actual work-
loads for the target machine, and

• the designer must be able to pro-
duce proper traces to investigate the
system’s behavior in specific (pos-
sibly critical) workload conditions.

Because only software techniques can
guarantee this kind of flexibility, we
have conducted our research in that
direction.

References
1. B. Vashaw, “Address Trace Collection

and Trace Driven Simulation of Bus
Based, Shared Memory Multiproces-
sors,” Tech. Report CMUCDS-93-4,
Dept. of Electrical and Computer
Eng., Carnegie Mellon Univ., Pitts-
burgh, 1993.

2. S.J. Eggers et al., “Techniques for
Efficient Inline Tracing on a Shared-
Memory Multiprocessor,” Proc. SIG-
METRICS ’90: Ann. Conf. Measure-
ment and Modeling of Computer Systems,
ACM Press, New York, 1990, pp.
37–47.

3. C.B. Stunkel, B. Janssens, and W.K.
Fuchs, “Address Tracing of Parallel
Systems via Trapeds,” Microprocessors
and Microsystems, Vol. 16, No. 5, June
1992, pp. 249–261.

4. S.R. Goldschmidt, Software Coherence
in Multiprocessor Memory Systems, PhD
thesis, Stanford Univ., Computer Sys-
tems Laboratory, Stanford, Calif.,
1993.

5. S.J. Eggers and R.H. Katz, “A Char-
acterization of Sharing in Parallel Pro-
grams and Its Application to Co-
herency Protocol Evaluation,” Proc.
15th Ann. Int’l Symp. Computer Archi-
tecture, IEEE Computer Society Press,
Los Alamitos, Calif., 1988, pp. 373–
382.

6. R.L. Sites and A. Agarwal, “Multi-
processor Cache Analysis Using
ATUM,” Proc. 15th Ann. Int’l Symp.
Computer Architecture, IEEE CS Press,
1988, pp. 186–195.

(Continued from page 57)

Table 1. The CMU multiprocessor traces.

APPLICATION SOURCE DESCRIPTION

Ecas A. Wilson Computer-architecture
(Encore) simulation

Hartstone N. Weiderman Real-time benchmark
(SEI at CMU)

Locusroute Splash Circuit routing
(by J. Rose)

MP3D Splash Rarefied fluid-flow
(by J.D. McDonald) simulation

Pde A. Wilson Partial differential
equation solver

October–December 1997 59

on both bus utilization and the traf-
fic portion caused by cache misses and
coherence operations. For this rea-
son, Tables 3 and 4 show all these
metrics—that is, GSP, bus utilization,
miss rate, and write transactions.

Tables 3 and 4 show error per-
centages with respect to the values
obtained from the actual traces.
Columns a to d correspond to the
four situations listed above. The
simulations use 64-byte blocks and
the Dragon coherence protocol.2
The timing parameters for the 64-
bit bus are the same as in the exam-
ple we’ll discuss in the next section
(see Table 7, Timing I). We ana-
lyzed a sample trace of 2,500,000
references per processor.

Table 3 shows the results of sim-
ulations for a 256-Kbyte, direct-
mapped cache. Although both the
miss rate and the number of bus
transactions incur large errors, the
GSP values show a relatively low
error, because the system has low
bus utilization (. 45%). The per-
centage of error for the GSP in-
creases with high bus utilization.
Table 4 shows the results of a sim-
ulation for a smaller cache size (64
Kbytes), with 65.5% average bus utilization.

In any case, the insertion of a stochastically generated
kernel-reference stream reduces the error, compared to
traces not including kernel references (compare columns
c and d to column b). The insertion of kernel references
derived from statistics collected from other traces
(MP3D) introduces a lower error in respect to traces
consisting of only user references (compare columns d
and b). This shows that our methodology is useful when
we have only a tracing tool that cannot capture kernel
references. Our methodology’s accuracy concerning the
memory subsystem also depends on the behavioral dif-
ferences between the workload from which the kernel

statistics are extracted and the applications to which the
synthetic kernel-generation model is applied.

PROCESS MANAGEMENT

One main goal of the multiprocessor scheduler is to
provide an acceptable degree of load balance to let the
programmer develop applications without caring
about the load distribution on the processors. Never-
theless, load balance induces process migration that
causes further coherence overhead. That is, the migra-
tion of a process can replicate in more than one cache
a memory block belonging to a private area of that
process. The coherence protocol treats these copies

Table 2. Kernel-reference statistics.

KERNEL KERNEL BURST KERNEL CODE KERNEL DATA

REFERENCES DISTANCE LENGTH REFERENCES REFERENCES WRITES

APPLICATIONS (%) µ σ µ σ (%) (%) (%)

Ecas 3.32 27,586 793 928 1,288 2.12 1.21 0.45
Hartstone 8.47 4,004 9,261 341 1,421 5.36 3.11 1.05
Locusroute 6.93 20,214 12,037 1,404 2,430 3.96 2.97 1.29
MP3D 3.21 28,357 901 911 1,134 2.05 1.17 0.43
Pde 5.30 21,805 11,369 1,158 2,189 3.40 1.90 0.75

Table 3. Kernel model validation—low bus utilization (≅ 45%).

APPLICATION ACTUAL ERROR (%)

a b c d

Global Ecas 684.8 +3.6 –1.8 –1.1
system Hartstone 780.4 +2.1 +0.1 –0.7
power

Locusroute 723.8 +7.2 –0.8 +4.0
MP3D 632.1 +4.8 –0.1 –0.1
Pde 780.5 +1.5 0.0 –0.2
Average square error 4.4 0.9 1.9

Bus Ecas 65.3 –3.7 +3.4 +2.9
utilization

Hartstone 18.4 –72.8 –11.1 +6.0
(%)

Locusroute 44.6 –53.8 –2.7 –27.5
MP3D 71.1 –6.7 +1.1 +1.1
Pde 23.1 –35.0 –1.7 –2.1
Average square error 43.5 5.5 12.7

Miss rate Ecas 0.273 –17.5 +3.6 +1.5
Hartstone 0.071 –77.0 +14.0 +42.2
Locusroute 0.292 –61.3 +1.0 –29.8
MP3D 0.522 –9.4 +1.1 +1.1
Pde 0.100 –40.0 +20.0 +24.0
Average square error 48.2 11.1 25.5

Write Ecas 47.50 +6.3 +4.6 +5.0
transactions Hartstone 10.58 –67.2 –19.2 +3.4
per 1,000

Locusroute 8.44 –19.9 –13.6 +11.9 memory
MP3D 0.88 –85.2 +23.8 +23.8 operations
Pde 13.20 –27.2 –7.5 –21.0
Average square error 51.0 15.5 15.4

60 IEEE Concurrency

as shared. Such passive sharing7 or process-migration
sharing1 results in a heavy and useless burden for the
shared bus. Furthermore, on every context switch, a
burst of cache misses occurs, because of the loading
of the working set of the new process. A scheduling
policy based on cache affinity can reduce the effects of
process migration and context switches.8 Cache-affin-
ity scheduling tries to schedule a process on the
processor where it last executed, to minimize cache
misses after a context switch by reusing the blocks
recently stored in the local cache.

Trace Factory models process management by sim-
ulating a simple scheduler. The input parameters for
the scheduler are the number of processes (Nproc), the
number of processors on the target machine (Ncpu), the
time slice in terms of number of references (Tslice), the
process-scheduling policy (cache affinity or random),
and the process-activation policy (nonblocking or two-
phase). To simulate the scheduler, Trace Factory

• starts from a set of source traces including a synthetic
kernel (one trace for each uniprocess application and
as many traces as the number of processes belonging
to the multiprocess application) and

• produces as many target traces as the number of
processors of the target machine.

By using the on-demand policy, the
speed of each simulated processor
and the memory hierarchy influence
the scheduling activity, just as in real
systems.

For uniprocess applications, the
scheduler operates as follows. If a
process p is running on processor P
for a D time interval (specified in
terms of number of references), D
references of the p source trace
become references for processor P.
At the simulation start-up, all the
processes are ready and are inserted
in a proper queue, R1. Initially, the
scheduler randomly selects Ncpu pro-
cesses, and each running process has
a different time slice (the process
running on processor i is assigned
a time slice Ti = I · Tslice/Ncpu). On
each processor, after the first con-
text switch, the next scheduled
process is regularly assigned Tslice.
This strategy, typically adopted in

multiprocessor operating systems, avoids a context
switch being needed simultaneously on all processors
every Tslice. Such a situation would produce an overlap
of miss peaks on all caches. This overlap would cause
bus saturation because of the bus transactions needed
to fetch missing blocks from memory.

On a context switch, the scheduler extracts a process
from R1 and assigns the process to the available proces-
sor. Process selection can follow the cache-affinity pol-
icy or can just be random. The scheduler can manage
the preempted process in two ways. The nonblocking
activation policy immediately inserts the preempted
process into R1. This strategy potentially suffers from
starvation: a target trace might not include the refer-
ences of a process, when the trace’s length is short and
Nproc/Ncpu @ 1. The two-phase activation policy uses
another queue, R2, which is initially empty (see Figure
1). On every context switch, the scheduler inserts the
preempted process into R2 (phase one). As soon as R1
becomes empty, the scheduler takes all the processes
from R2 and inserts them into R1 (phase two). This strat-
egy ensures that a process does not have to wait an indef-
inite time for its turn. Indeed, a process cannot execute
n + 1 times before each other process executes n times.

For multiprocess applications, source traces must
include synchronization tags representing the actual

Table 4. Kernel model validation—high bus utilization (65.5%).

APPLICATION ACTUAL ERROR (%)

a b c d

Global Ecas 357.1 +9.6 +3.1 +3.4
system Hartstone 765.7 +3.5 +0.2 –1.2
power

Locusroute 555.6 +30.2 +6.3 +20.2
MP3D 420.4 +15.0 +3.7 +3.7
Pde 740.1 +4.7 +0.3 +1.3
Average square error 15.9 3.5 9.3

Bus Ecas 95.1 –2.0 –0.7 –0.6
utilization Hartstone 23.9 –71.1 –13.1 +9.0
(%)

Locusroute 81.6 –51.5 –11.6 –31.3
MP3D 94.7 –4.1 –1.0 –1.0
Pde 37.2 –39.1 –3.5 –10.2
Average square error 43.0 8.0 15.3

Miss rate Ecas 1.247 –6.3 –3.4 –3.8
Hartstone 0.130 –77.7 –4.6 +28.4
Locusroute 0.768 –63.3 –22.6 –45.8
MP3D 0.891 –15.0 –4.9 –4.9
Pde 0.225 –45.8 –0.8 –6.2
Average square error 49.8 10.6 24.4

Write Ecas 35.63 +1.4 –0.1 0.0
transactions Hartstone 8.43 –58.8 –28.8 –19.0
per 1,000

Locusroute 4.63 –36.5 –32.2 +27.9 memory
MP3D 0.67 –81.6 –37.6 –37.6 operations
Pde 9.75 –16.7 –7.5 –27.0
Average square error 48.4 25.8 25.6

October–December 1997 61

synchronization sequence of the parallel-application
execution.9 In this case, the process scheduling is driven
by the time slice and the synchronization sequence for
multiprocess applications. When a process reaches an
out-of-order synchronization event, it is inserted into
the Blocked waiting queue (see Figure 1) to wait for the
synchronization event. Then, it enters either R1 or R2,
depending on the activation policy.

VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION

In virtual-memory models based on paging, a running
process might produce virtual and physical references
that have different localities. The mapping of sequential
virtual pages into nonsequential physical pages causes
this difference and influences the number of intrinsic-
interference (or conflict) misses caused by interferences
among kernel code and data, user data, and code accesses
in the same cache set.

We model the virtual-to-physical address translation
as follows (see Figure 2). We suppose that each process
has its own address space for code and private data. The
kernel and its associated data structures reside at the
bottom of the virtual address space of each process.
When a set of processes shares a memory area, the sys-
tem ensures that for such processes, the shared area is
mapped on the same set of physical-memory pages.
When a number of instances of the same application are
active, their code is shared. Finally, kernel instances
share a unique set of physical memory pages.

Each process starts its execution without any page
being stored into physical memory in advance. As soon
as a process tries to operate a location in a page that does
not reside in the physical memory, a page fault is gen-
erated and the pertinent page is allocated (on-demand
paging). This page fault triggers a context switch, and
the process is suspended from execution and spends a

predefined number of cycles in the Blocked waiting
queue, as is the case for any other synchronization event.
In this way, we model the delay needed to fetch the
required page from disk. Because the traces usually lack
any information concerning I/O operations, no other
aspect of I/O interaction is considered.

Using Trace Factory

We used Trace Factory to evaluate and compare five
coherence protocols for a shared-bus, shared-memory
multiprocessor, using three typical workloads and two
bus timings. We evaluated the protocols’ performance

Executing

R1

Blocked

Scheduling
Out-of-order

synchronization
point

In-order
synchronization

point

Context
switch

R2

Ready

R1
empty

Figure 1. State-transition diagram for the two-phase
activation strategy.

Code

Code

Data

Kernel
dara

Kernel
code

Virtual
address
space of
process i

Code

Code

Data

Kernel
dara

Kernel
code

Virtual
address
space of
process i

Shared
code

Physical memory

Data

Code

Data

Data

Data

Shared
code

Code

Shared
data

Code

Code

Data

Kernel
data

Kernel
code

Virtual
address
space of
process i

Code

Code

Shared
data

Data

Kernel
data

Kernel
code
Virtual

address
space of
process j

Code

Code

Shared
data

Data

Kernel
data

Kernel
code

Kernel
data

Kernel
code

Virtual
address
space of

process k

Figure 2. A scheme of the virtual-to-physical address
translation.

62 IEEE Concurrency

for global system power and bus utilization, because for
this kind of machine, the shared bus is the bottleneck
that limits the architecture’s scalability.

SOURCE-TRACE PRODUCTION

Typical workloads for a multiprocessor workstation
consist of a set of Unix commands, uniprocess applica-
tions, and multiprocess applications. We selected some
typical Unix commands (awk, cp, dd, du, lex, rm, and
ls) with different command-line options, three utility
programs (Cjpeg, Djpeg, and Gzip), a network appli-
cation (Telnet), and a user application (Msim, the multi-
processor simulator used in this work). In a typical sit-

uation, various users might run different
system commands and ordinary applica-
tions. To take into account that users can
use the same program at different times,
we traced some commands in shifted exe-
cution sections: initial (beg) and middle
(mid). Table 5 describes these source
traces in terms of the number of distinct
(unique) blocks the program uses; code,
data-read, and data-write access percent-
ages; and the number of system calls.

Because the sharing pattern of parallel
applications significantly influences a mul-
tiprocessor’s performance, we considered
two parallel programs with different shar-
ing behavior, MP3D and Cholesky, both

from the Splash suite. MP3D simulates rarefied hyper-
sonic flow; the generated trace relates to a case of 10,000
molecules and 20 time steps. Cholesky factorizes a
sparse positive definite matrix, using the homonymous
method. For Cholesky, we generated the trace using as
input a 1,806 × 1,806 matrix with 30,284 nonzero ele-
ments coming from the Boing/Harwell sparse matrix test
(bcsttk14). We used TangoLite (see the sidebar, “Trace
generation”) to produce all source traces. Thus, the
traces belong to MIPS-based machines. We traced the
parallel applications on a virtual multiprocessor having
as many processors as the number of application
processes.

Table 5. Statistics of uniprocess application and Unix command traces.

APPLICATION DISTINCT CODE (%) DATA (%) SYSTEM
BLOCKS READ WRITE CALLS

awk (beg) 4,963 76.76 14.76 8.47 29
awk (mid) 3,832 76.59 14.48 8.93 47
Cjpeg 1,803 81.35 13.01 5.64 18
cp (beg) 2,615 77.53 13.87 8.60 26,526
cp (mid) 2,039 78.60 14.17 7.23 56,388
Msim 960 84.51 10.48 5.01 345
dd 139 77.47 16.28 6.25 47,821
Djpeg (beg) 2,013 81.00 12.75 6.26 15
du 1,190 75.86 16.37 7.77 9,474
lex 2,126 78.67 15.49 5.84 40
Gzip 3,518 82.84 14.88 2.28 13
ls -aR 2,911 80.62 13.84 5.54 1,196
ls -itR (beg) 2,798 78.77 14.58 6.64 1,321
ls -itR (mid) 2,436 78.42 14.07 7.51 1,778
rm (beg) 1,314 86.39 11.51 2.10 10,259
rm (mid) 1,013 86.29 11.65 2.06 15,716
Telnet (beg) 781 82.52 13.17 4.31 2,401
Telnet (beg) 205 82.78 12.93 4.28 2,827

Table 6. Statistics of multiprocess source traces. WRR is write-run length and XRR is external rereads.

DISTINCT CODE DATA (%) SHARED SHARED DATA (%)
WRITE-RUN

WORKLOAD PROCESSORS BLOCKS (%) READ WRITE BLOCKS ACCESSES WRITE

WRL XRR
µ σ µ σ

MP3D 2 5,173 78.14 15.22 6.64 ,913 9.10 2.22 11.88 10.83 2.15 2.65
4 6,480 78.56 14.30 7.14 1,625 10.34 3.20 8.18 6.04 1.54 1.60
6 6,923 78.70 13.99 7.31 2,004 10.91 3.56 7.03 5.06 1.51 1.63
8 7,169 78.77 13.84 7.39 2,309 11.30 3.76 6.55 4.65 1.50 1.67

10 7,308 78.81 13.74 7.45 2,597 11.62 3.91 6.25 4.40 1.50 1.71
12 7,397 78.83 13.68 7.49 2,820 11.88 4.02 6.07 4.32 1.50 1.73
14 7,509 78.85 13.65 7.50 3,002 12.07 4.10 5.89 4.18 1.51 1.75

Cholesky 2 14,312 79.35 12.88 7.77 1 0.14 0.00 2.00 0.00 2.00 0.00
4 17,119 79.83 13.57 6.60 7,215 8.29 1.19 4.75 3.47 1.06 0.65
6 19,172 80.21 13.65 6.14 8,789 9.67 1.32 4.46 3.12 1.06 0.68
8 20,569 80.43 13.66 5.91 10,079 10.24 1.36 4.43 3.04 1.05 0.63

10 21,557 80.69 13.70 5.61 11,268 10.82 1.44 4.54 3.00 1.06 0.74
12 22,900 80.98 13.69 5.33 12,404 11.18 1.44 4.89 3.67 1.05 0.61
14 23,669 81.11 13.70 5.19 12,876 11.47 1.48 5.10 3.80 1.05 0.63

October–December 1997 63

Table 6 summarizes the statistics for the multiprocess
application traces. Two metrics—write-run length
(WRL) and external rereads (XRR)—characterize access
patterns to shared data.3 The first is the number of write
operations from a given processor to a memory block
before another processor accesses that block. (A write-
run is the sequence of write—eventually interleaved by
read—references.) The second metric indicates how
many read operations will use a block after one write-run
has terminated and before another starts. A natural use
of write-run statistics is to select the better coherence
strategy between write-invalidate and write-update for a
given workload. A long write-run suggests that a write-
invalidate coherence protocol should be chosen. The
cost of the initial miss (caused by invalidation) is bal-
anced by the large amount of bus traffic saved because
all the subsequent write operations can execute locally
during the write-run. A large number of external rereads
indicates to what extent different processors need a copy
and, therefore, whether a write-update strategy would
be convenient.

The write-run length also indicates whether a spe-

cific shared address exhibits fine-grain sharing, or
whether each processor uses that address sequentially
over long periods of time.3 For our test case, the statis-
tics show that

• MP3D exhibits coarse-grained sharing, because the aver-
age write-run length varies from 5.89 to 11.88; and

• Cholesky exhibits medium-grained sharing, hav-
ing an average write-run length from 2.00 to 5.10.

TARGET WORKLOAD PRODUCTION AND SIMULATED-
ARCHITECTURE PARAMETERS

The source traces considered in the previous paragraph
are unscheduled; they do not include kernel references;
and the references involve virtual addresses. For our
protocol analysis, we generated three workloads: UniP,
Mix1, and Mix2. UniP incorporates 30 uniprocess
applications from Table 5. Mix1 and Mix2 consist of
30 uniprocess applications and the load from a parallel
application (MP3D and Cholesky, respectively) that
generates a number of processes equal to one-half of
the processors available on the machine (see Table 6).

Result analysis Graphics Tables

Trace
statistics

Page
patterns

Schedule
tables

Unix
commands

C-language sources

Generic
applications

Parallel
applications

Actual traces
(with kernel references)

awk
ls
cp

Cjpeg
Gzip

Tracing tool Kernel-parameter gathering

Cholesky

MP3D

Target traces via
synchronous channels

Trace-driven
multiprocessor simulator

Source-traces library
(with user references only)

Workload definition

Number of processors
MMU page size

Multiprocessor-
architecture description

awk
1 process

awk
(beg)

awk
(mid)

Gzip MP3D
000

MP3D
001

Process scheduling
Kernel-reference modeling

Virtual-to-physical address translation

MP3D
002

MP3D
003

Kernel
model

ls
1 process

Gzip
1 process

MP3D
4 processes

Kernel-
burst
model

Kernel-
reference

model

Figure 3. The global scheme to produce and use a target trace in a simulation.

Figure 3 shows the scheme for producing
a target trace for Mix1.

The simulator4 used for our analysis char-
acterizes a multiprocessor in terms of CPU,
cache, and bus parameters (see Table 7). The
CPU parameters are the clock cycle, the
minimal number of clock cycles for a
read/write operation, and the temporal dis-
tribution of the memory accesses. We de-
scribe this distribution in terms of the max-
imum number (M) of references per time
interval and the probability that this interval
contains exactly 0, 1, 2, …, M memory ref-
erences. That time interval is a fixed num-
ber of CPU clock cycles.

The cache parameters are cache size, block
size, associativity, and the duration of a
read/write operation on a cached copy. The
simulator employs a least recently used (LRU)
replacement policy. We can simulate eight
different bus-based coherence protocols.

Finally, the bus parameters are the num-
ber of CPU clock cycles for each kind of
transaction: write, invalidation, update-
block, and memory-to-cache and cache-to-
cache read-block.

The target architecture of our analysis is a
multiprocessor consisting of a set of MIPS-
R3000-like independent processors (ranging
from two to 28). Each processor has a 256-
Kbyte, two-way set-associative cache. The
processors access shared memory via a 64-bit
shared bus. The page size is 4 Kbytes; the
time slice is 200,000 references; and the
analyzed execution time corresponds to
2,500,000 references per processor. For
choosing a process on a context switch, we
adopted random selection from the ready
queue, with two-phase activation. The simu-
lations involved two block sizes: 64 bytes and
128 bytes, which generated two different sets
of timings for bus transactions (see Table 7).

EVALUATING COHERENCE PROTOCOLS

UNDER DIFFERENT WORKLOADS

We used the target traces we’ve described to
analyze the behavior of coherence protocols
as a function of the workload features. We
chose these protocols: Dragon, PSCR10 (pas-
sive-shared-copy removal), Berkeley, Update

Table 7. Numerical values of some input parameters for the
multiprocessor simulator (times are in clock cycles).

CLASS PARAMETER TIMING I TIMING II

CPU Read cycle 2 2
Write cycle 2 2
Duration of each time interval (cycles) 14 14
Maximum number of references per time interval 2 2
Probability of 0 references per time interval 0.1 0.1
Probability of 1 reference per time interval 0.3 0.3
Probability of 2 references per time interval 0.6 0.6

Cache Cache size 256 Kbytes 256 Kbytes
Block size 64 Kbytes 128 Kbytes
Associativity 2 2
State updating 1 1
Write cycle 1 1
Read cycle 1 1

Bus Width 64 bits 64 bits
Write transaction 5 5
Invalidation 5 5
Update-block transaction (UpdateB) 18 34
Memory-to-cache read-block transaction (MReadB) 32 48
Cache-to-cache read-block transaction (CReadB) 22 38

0

500

1,000

1,500

2,000

2
(a)

(b)

4 6 8 10 12 14 16 18 20 22 24 26 28

Gl
ob

al
sy

ste
m

 p
ow

er

Number of processors

Dragon
Berkeley

PSCR
Competitive
Update once

0

500

1,000

1,500

2,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Gl
ob

al
sy

ste
m

 p
ow

er

Number of processors

Dragon
Berkeley

PSCR
Competitive
Update once

Figure 4. Global system power for the UniP workload: (a) Timing I;
(b) Timing II.

64 IEEE Concurrency

October–December 1997 65

Once,11 and Competitive Snoopy Caching. (A book
by Milo Tomasevic and Veljko Milutinovic
provides background on Dragon, Berkeley,
Competitive Snoopy Caching, and other pro-
tocols and aspects related to cache coherence.2)
Dragon uses a write-update (write-broadcast)
strategy, whereas the other protocols use an
invalidation strategy. PSCR employs selective
invalidation to limit the number of passive
shared copies. It invalidates the copies belong-
ing to the private data area of a process as soon
as another processor fetches them. Berkeley
and Update Once invalidate on the first or sec-
ond write on a shared copy, respectively. Com-
petitive Snoopy Caching switches from write-
update to write-invalidate for each cached
block, when the number of cycles for write
broadcasts issued equals the sum of the cycles
potentially needed to reread the block. This
technique limits the coherence-related over-
head to twice the optimal value.

Let’s first examine the UniP workload, in
which actually shared areas belong only to the
kernel, and further shared copies are gener-
ated because of process migration. These pas-
sive-shared copies are the main percentage of
total shared copies. As we expected, PSCR
performs best (see Figure 4), because it sys-
tematically destroys these passive shared
copies. For the same reason, all the protocols
that invalidate shared copies perform better
than Dragon. We used the two block sizes to
show how the different bus timings influence
performance.

Dragon performs poorly compared to the
other protocols because it causes bus satura-
tion for a lower number of processors (see
Figure 5). Much of this load consists of write
transactions on shared copies, which are
caused by process migration. Figure 6, which shows
the percentage of write transactions on passive shared
copies for Dragon, highlights the passive-sharing phe-
nomenon.7

Berkeley, Update Once, and Competitive Snoopy
Caching achieve fewer write transactions and invalida-
tions by using other invalidation policies. These indis-
criminating invalidation strategies, which act on all
shared copies, might cause a miss raise (an increase in
misses) on account of active shared-copy invalidations.
Those protocols use a portion of the bus bandwidth for

read-block transactions and a much smaller portion for
write transactions and invalidations. In particular,
Berkeley’s invalidation reduces the amount of shared
copies and thus the number of invalidation transactions.
At the same time, this strategy causes a miss increase
whose consequences are less important because the pro-
tocol heavily employs the cheaper cache-to-cache trans-
actions.

Figure 7 shows the system behavior for Mix1 and
Mix2. The introduction of a parallel application with
coarse-grain sharing (Mix1) decreases the global

D B P C U D B P C U D B P C U D B P C U

Number of processors

0

10

20

30

40

50

60

70

80

90

100

Bu
s u

til
iza

tio
n

ra
tio

 (%
)

Write

CReadB

MReadB

UpdateB

6 12 18 24

Figure 5. The bus-utilization ratio, segmented by transaction
type, for the UniP workload. For each processor configuration,
the figure shows the behavior of the five protocols (D = Dragon,
B = Berkeley, P = PSCR, C = Competitive Snoopy Caching, and U =
Update Once). The Write bar also includes invalidation
transactions for those protocols that use this kind of transaction.

Number of processors

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W
rit

e t
ra

ns
ac

tio
ns

 (%
)

Due to actual sharing

Due to passive sharing

Figure 6. Write transactions involving passive shared copies for
the UniP workload, Dragon protocol, and Timing I.

66 IEEE Concurrency

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of processors

Dragon
Berkeley

PSCR
Competitive

Update Once

(a)

Gl
ob

al
sy

ste
m

 p
ow

er

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of processors

Dragon
Berkeley

PSCR
Competitive

Update Once

(b)

Gl
ob

al
sy

ste
m

 p
ow

er

Dragon
Berkeley

PSCR
Competitive

Update Once

0

500

1,000

1,500

2,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of processors(c)

Gl
ob

al
sy

ste
m

 p
ow

er

Dragon
Berkeley

PSCR
Competitive

Update Once

0

500

1,000

1,500

2,000

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of processors(d)

Gl
ob

al
sy

ste
m

 p
ow

er

Figure 7. Global system power: (a) Mix1, Timing I; (b) Mix1, Timing II; (c) Mix2, Timing I; (d) Mix2, Timing II.

Table 8. Statistics of target traces for Dragon with Timing 1. WRR is write-run length and XRR is external rereads.

DISTINCT CODE DATA (%) SHARED SHARED DATA

WRITE-RUN

BLOCKS (%) READ WRITE BLOCKS ACCESSES WRITE

WRL XRR
WORKLOAD PES µ σ µ σ

UniP 8 65,989 77.00 13.52 9.48 9,912 16.52 4.96 20.63 10.48 5.30 8.84
12 97,218 77.10 13.26 9.64 13,577 17.24 5.32 20.05 9.83 6.32 9.30
16 125,186 77.10 13.24 9.66 15,692 17.57 5.44 19.69 10.64 5.82 9.04
20 183,987 77.28 13.07 9.65 17,249 17.63 5.45 19.14 11.21 5.76 9.01
24 257,916 77.52 12.80 9.68 19,954 17.32 5.40 18.54 11.19 5.09 8.40

Mix1 8 82,096 77.14 13.35 9.51 11,102 16.40 4.93 15.50 10.10 4.01 6.86
12 85,168 76.81 13.37 9.82 17,003 17.55 5.45 12.24 9.16 3.40 5.45
16 105,771 76.86 13.25 9.89 20,876 17.96 5.74 10.11 8.16 2.95 4.75
20 122,748 76.90 13.28 9.82 21,129 18.29 5.88 9.15 7.43 2.74 4.34
24 155,872 76.83 13.19 9.98 22,544 18.42 5.94 8.49 6.97 2.57 3.94

Mix2 8 85,702 77.28 13.23 9.49 12,124 16.26 4.92 15.42 10.93 4.38 7.52
12 91,582 76.99 13.22 9.79 17,886 17.04 5.31 12.56 10.71 3.34 6.51
16 112,150 77.12 13.24 9.64 22,196 17.41 5.38 10.19 10.15 2.80 5.85
20 131,536 77.10 13.24 9.66 24,574 17.66 5.45 9.95 9.89 2.53 5.57
24 166,810 77.27 13.20 9.53 27,058 17.77 5.42 9.99 9.91 2.42 5.34

October–December 1997 67

performance for each protocol (except Dragon), because
of the active-shared-copy overhead required to keep
those copies coherent (see Figure 7a and b). (This effect
is also evident on the bus-utilization-ratio graphs in Fig-
ure 8.) In the case of Dragon, this behavior is not appre-
ciable, because it saturates the bus, starting from a low
number of processors. Even for these workloads, the
behavior changes with the block size, and Berkeley

exhibits the worst penalization with
the 128-byte block. Medium-grain
sharing (Mix2) decreases overhead
(see Figure 7c and d). Because the
protocols adopt different invalida-
tion strategies, they behave differ-
ently for different timing costs for
write, invalidation, and read-block
transactions. In particular, Compet-
itive Snoopy Caching takes advan-
tage of Timing II.

Finally, Table 8 reports the sta-
tistics of target traces obtained for
Dragon with Timing I. We focus
on Dragon to better highlight
passive-sharing effects, because
Dragon does not use shared-copy
invalidation.

Comparing the write-run statis-
tics of Tables 6 and 8 reveals how
kernel activities and uniprocess
applications (particularly process
migration) modify the write-runs of
source traces. Because the write-
run, or in other words the sharing
pattern, influences the cost of main-
taining coherence, the introduction
of kernel modeling is strongly mo-
tivated in the evaluation of such
multiprocessors.

This example of performance eval-
uation shows that Trace Factory can

• produce traces that include
aspects of kernel activity, starting
from tracing tools that cannot
capture kernel references; and

• generate more flexible traces (for
example, adding more applica-
tions, varying the number of
processors, or varying parame-
ters that influence the scheduling

or the virtual-memory management), starting from
traces obtained with other tools.

We performed all simulations on a PC using a 133-
MHz Pentium and the Linux operating system. The
estimated total computation time was 32 µs per refer-
ence, of which 1.2 µs (3.75%) was required by Trace
Factory.

D B P C U D B P C U D B P C U D B P C U

Number of processors

0

10

20

30

40

50

60

70

80

90

100
Bu

s u
til

iza
tio

n
ra

tio
 (%

)

6 12 18 24

D B P C U D B P C U D B P C U D B P C U

Number of processors

(a)

(b)

0

10

20

30

40

50

60

70

80

90

100

Bu
s u

til
iza

tio
n

ra
tio

 (%
)

6 12 18 24

Write

CReadB

MReadB

UpdateB

Write

CReadB

MReadB

UpdateB

Figure 8. The bus-utilization ratio, segmented by transaction type, for
workloads (a) Mix1 and (b) Mix2. For each processor configuration, the
figure shows the behavior of the five protocols (D = Dragon, B = Berkeley,
P = PSCR, C = Competitive Snoopy Caching, and U = Update Once). The
Write bar also includes invalidation transactions for those protocols that
use this kind of transaction.

68 IEEE Concurrency

Our methodology is useful in all the situa-
tions in which we have a tracing tool that
cannot record kernel references. We used
Trace Factory to evaluate shared-bus,
shared-memory multiprocessors, but it can

also work for other models of multiprocessors. Other eval-
uation methodologies (such as those based on complete
simulation) can obviously provide better accuracy, but our
proposed solution represents a good trade-off between
speed, accuracy, and complexity. In particular, the envi-
ronment is very flexible, and the evaluation of a machine
running special and critical workloads requires short setup
and simulation time. Our hybrid methodology will be use-
ful also in other fields in which standard tools eventually
cannot trace all types of references. This is the case, for
example, with embedded-system evaluation.

ACKNOWLEDGMENTS

The Ministry of University and Scientific and Technological Research
(MURST), Italy, and the Unviersity of Pisa, Italy, supported this work.
Thanks to Steve Herrod at Stanford University for providing and help-
ing with TangoLite. The multiprocessor traces, distributed by Carnegie
Mellon University, were collected by Bart Vashaw with the assistance
and supervision of Drew Wilson of Encore Computer Corporation and
Dan Siewiorek of Carnegie Mellon. We are particularly grateful to Pier-
francesco Foglia for contributing significantly to the validation of our
proposed methodology. Our discussions with Veljko Milutinovic and
Per Stenström helped improve this article considerably. Finally, we thank
the anonymous reviewers for their valuable comments and suggestions.

REFERENCES
1. K. Hwang, Advanced Computer Architecture: Parallelism, Scalabil-

ity, Programmability, McGraw-Hill, New York, 1993.

2. M. Tomasevic and V. Milutinovic, The Cache Coherency Problem
in Shared-Memory Multiprocessors—Hardware Solutions, IEEE
Computer Society Press, Los Alamitos, Calif., 1993.

3. S.J. Eggers, “Simulation Analysis of Data Sharing in Shared Mem-
ory Multiprocessors,” PhD dissertation, UCB/CSD 89/501, Com-
puter Science Dept., Univ. of California, Berkeley, Calif., 1989.

4. C.A. Prete, G. Prina, and L. Ricciardi, “A Trace-Driven Simu-
lator for Performance Evaluation of Cache-Based Multiproces-
sor Systems,” IEEE Trans. Parallel and Distributed Systems, Vol.
6, No. 9, Sept. 1995, pp. 915–929.

5. C.B. Stunkel, B. Janssens, and W.K. Fuchs, “Address Tracing for
Parallel Machines,” Computer, Vol. 24, No. 1, Jan. 1991, pp. 31–45.

6. M.A. Hollyday and C.S. Ellis, “Accuracy of Memory Reference
Traces of Parallel Computations in Trace-Driven Simulation,”
IEEE Trans. Parallel and Distributed Systems, Vol. 3, No. 1, Jan.
1992, pp. 97–109.

7. C. Prete et al., “Some Considerations about Passive Sharing in
Shared-Memory Multiprocessors,” IEEE TCCA Newsletter, Mar.
1997, pp. 34–40; http://computer.org/tab/tcca/news/mar97/
prete.pdf.

8. M.S. Squillante and E.D. Lazowska, “Using Processor-Cache
Affinity Information in Shared-Memory Multiprocessor Sched-
uling,” IEEE Trans. Parallel and Distributed Systems, Vol. 4, No.
2, Feb. 1993, pp. 131–143.

9. B. Vashaw, “Address Trace Collection and Trace Driven Simu-
lation of Bus Based, Shared Memory Multiprocessors,” Tech.
Report CMUCDS-93-4, Dept. of Electrical and Computer Eng.,
Carnegie Mellon Univ., Pittsburgh, 1993.

10. C.A. Prete, G. Prina, and L. Ricciardi, “A Selective Invalidation
Strategy for Cache Coherence,” Inst. Electronics, Information, and
Communications Engineers (IEICE) Trans. Information and Systems,
Vol. E78-D, Oct. 1995, pp. 1316–1320.

11. J.G. Gee and A.J. Smith, “Evaluation of Cache Consistency Algo-
rithm Performance,” Proc. MASCOTS ’96: Fourth Int’l Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommu-
nications Systems, IEEE CS Press, 1996, pp. 236–248.

Roberto Giorgi is a PhD student in computer engineering at the Uni-
versity of Pisa, Italy. His interests involve computer architecture themes
such as coherence protocols for multiprocessors, the behavior of user
and system code, architectural simulation, and multithreaded proces-
sors. He took part in the ChARM project in cooperation with VLSI
Technology Inc., San Jose, California, developing part of the software
used for performance evaluation of ARM-processor-based embedded
systems with cache memory. He received his MS in electronic engi-
neering, summa cum laude, from the University of Pisa, with a thesis
on multiprocessor trace-driven performance evaluation. He is a mem-
ber of the IEEE, IEEE Computer Society, and ACM. Contact him at
Dip. Ingegneria della Informazione, Univ. di Pisa, via Diotisalvi 2,
I-56126 Pisa, Italy; giorgi@acm.org; http://www.iet.unipi.it/~giorgi/.

Cosimo Antonio Prete is an associate professor of computer systems at
the Department of Electronic, Computer, and Telecommunication Engi-
neering at the University of Pisa, Italy. His research interests include
multiprocessor architectures, cache memories, and performance evalu-
ation. He has performed research in debugging environments for dis-
tributed systems, commit protocols for distributed transactions, cache-
memory architecture, coherence protocols for tightly coupled
multiprocessor systems, and software environments for teaching com-
puter architecture. He has been project manager for the University of
Pisa for the Esprit III Tracs project (a flexible real-time environment for
traffic control systems) and for the Cache-Sim project (a framework for
the modeling and simulation of cache memories in ARM-based systems),
which produced ChARM for VLSI Technology Inc., San Jose, Califor-
nia. He has also acted as an expert on the Open Microprocessor Systems
Initiative for the Commission of the European Communities. He earned
his undergraduate degree in electronic engineering, summa cum laude,
and his PhD in computer engineering from the University of Pisa. He is
a member of the IEEE, IEEE Computer Society, and ACM. Contact
him at Dip. Ingegneria della Informazione, Univ. di Pisa, via Diotisalvi
2, I-56126 Pisa, Italy; prete@iet.unipi.it; http://www.iet.unipi.it/~prete/.

Gianpaolo Prina has performed research in coherence protocols for
tightly coupled multiprocessor systems. He is a consultant at the
Department of Electronic, Computer, and Telecommunication Engi-
neering at the University of Pisa. His research interests include cache
memories, multiprocessor architectures, and trace-driven simulation.
He received his degree in electronic engineering, summa cum laude,
from the University of Pisa, and his PhD from the Scuola Superiore
S. Anna in Pisa. Contact him at Dip. Ingegneria della Informazione,
Univ. di Pisa, via Diotisalvi 2, I-56126 Pisa, Italy; prina@iet.unipi.it.

Luigi Ricciardi is a software engineer at Intecs Sistemi SpA, Pisa,
Italy. He has performed research in coherence protocols for tightly
coupled multiprocessor systems. His research interests include cache
memories, multiprocessor architectures, and trace-driven simulation.
He received his degree in electronic engineering from the University
of Pisa in 1992. Contact him at Intecs Systemi SpA, Via Gereschi,
32/34, 56127 Pisa, Italy; ricciard@iet.unipi.it.

