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ABSTRACT

Leakage power in data cache memories represents a sizable fraction of total power
consumption, and many techniques have been proposed to reduce it. Previous
techniques put unused lines for example to drowsy state or switch them off completely
(cache decay) in order to save power. Our idea is to adaptively select mostly used cache
lines. We found that this can be achieved automatically by using a tiny cache acting as a
filter “L0” cache.

Our experiments, with complete MiBench suite for ARM based processor, show 13%
improvement in leakage saving and 21% in EDP versus drowsy cache and 52%
improvement in leakage saving and 65% in EDP versus cache decay (in average).
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1 Introduction

Recent studies have demonstrated that the power consumption of cache memories
accounts for about 50% of the total power consumed in embedded computing systems [1,
2]. Static power has increased in importance in recent CMOS technologies and it can be as
much as 50% of total power dissipation.

Many research projects have focused on reducing leakage power in the caches by putting
unused lines into a low-leakage state. The proposed techniques can mainly be divided
into state-preserving (e.g. drowsy [3]) and non-state-preserving ones (e.g. gated-Vdd [4]).
Both techniques work well if the selection of the lines that will be put in power-saving
mode is done accurately. It is important to carefully select which lines to deactivate and
when. This is necessary to avoid performance loss while achieving leakage saving. As a
matter of fact, during a fixed period of time, only a small subset of cache lines is used [7],
so there are lot of opportunities for power saving.

Filter “LO” cache [8] is very small cache placed between L1 and CPU. The filter cache
works as a buffer that stores recently accessed cache lines. This approach reduces
dramatically the activity of the L1 cache.

In our research, we are investigating the addition of a filter cache to the conventional L1
power-saving caches. By reducing the activity of L1, due to the filtering of the recently
accessed lines, the power-saving policies in L1 can be more aggressive, hence they can put
more lines in power-saving state. The filter cache doesn’t have any power-saving
techniques, and provides fast access time. Because of the fact that the filter cache is very
small compared to the L1, the additional leakage it introduces is almost negligible.



2 Related Work

It has been demonstrated that leakage power in cache memories is more important than
dynamic with current and next generation technologies [2]. Unfortunately the fastest
implementation is not always the most beneficial from the energy stand-point [4]. Cache
utilization varies widely across a range of applications and it varies significantly also
during the execution of a single application [5], so there are a lot of opportunities for
switching off cache lines in order to reduce leakage.

Recent mainly consist on a better organization of the cache by reducing its size
dynamically. Unused lines can be put into a low-leakage state. When a cache block is put
in power-saving state, the technique is called state-preserving if the block content is
maintained and non state-preserving if it is destroyed. The main architectural methods of
those two categories are drowsy caches [3] for the first one and cache decay [6] for the
second one. Cache Decay uses the circuital gated-Vdd technique [7]; it introduces an extra
transistor that gates the supply of the cache SRAM cells. A dramatically reduction of the
leakage current is achieved, but the loss in performance is not negligible and it causes
some increase in dynamic power dissipation. On the other hand, drowsy caches decrease
leakage by reducing the power supply without losing information. No additional access to
lower memory level is necessary during an access into a drowsy line but the leakage
reduction is smaller than in gated-Vdd. A comparison between the two proposal has been
done in [8]. After these two techniques have been introduced, many others have suggested
their improvements.

Meng et al. [9] explored the limit of leakage power reduction in caches and they found
that, with the perfect knowledge of the access pattern it is possible to find the exact
moment when to put a line into drowsy state or when to switch it completely off.

A trade-off approach between performance and dynamic energy consumption, has been
proposed in [10]. A tiny filter cache is positioned behind the processor and the standard L1
data cache to reduce the performance loss.

3 New cache hierarchy organization

Figure 1 shows the memory hierarchy organization with the L0 cache introduced between
the CPU and the upper levels of the hierarchy.
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Figure 1. New memory hierarchy organization for leakage reduction.



LO cache is a very tiny (e.g. 128B) and fast cache. The latency between the L0 cache and the
processor is as small as possible as well as the one between LO and L1. L1 cache is a
standard cache (e.g. 64KB) with power-saving capabilities. We have focused on the two
most important technique: drowsy cache [3] for the state-preserving category, and cache
decay [6] for the non-state-preserving.

The addition of LO cache has several advantages over other proposed leakage saving
techniques. The fact that it filters out significant amount of L1 accesses suggests that the
reduction of IPC that occurs in other techniques will be significantly smaller. L0 is a simple
and very small cache, so the additional cost of this solution is less than 1% of the L1 cost
and it doesn’t impact IPC significantly;

4 Simulations

We performed simulation with HotLeakage [10] simulator, retargeted for ARM based
processor and modified it in order to permit our configuration. We have used technology
parameters values for a 70 nm process at Vqa=0.9V. We simulated the complete suite of
MiBench [13] benchmarks, compiled for ARM based processor. We compared six different
configurations, as shown in Table 1. For each of these configurations, we tested various
size for LO (from 128B direct mapped to 64B fully associative) and L1 (16KB-64KB) as in
common ARM xScale (Table 1).

For the leakage evaluation, we took into account all the extra leakage that each low-power
technique introduces.

Table 1. Exploration space.

Hierarchy configurations Cache configurations

L1: common (no power-saving technique) level 1 data Lo L1

cache with no LO
LO+ common (no power-saving technique) level 1 data : 64B 16KB
L1 cache with LO Cache size 1288 64KB
L1drowsy level 1 drowsy data cache without LO cache Block size 16B 16B
L1decay level 1 decay data cache without LO cache Associativity DM - FA 2-4
LO +
L1drowsy level 1 drowsy data cache plus LO cache Latency 1 cycle 2 cycles
LO+
L1decay level 1 decay data cache plus LO cache

We analyzed three metrics: leakage, IPC and energy-delay product (in our case
leakage*number_of_cycle). Figure 2 shows EDP over MiBench
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Figure 2. EDP (leakage*sim_cycle). The average values are shown.

On average, our proposal versus drowsy cache increases the leakage-saving of 13% and
the IPC of 5%; the EDP is improved of 21%. Versus cache decay these values increase at
52% for the leakage saving, 10% for the IPC and 65% for EDP.
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