
COMPITO di ARCHITETTURA DEI CALCOLATORI del 10-12-2025 MATRICOLA________________

 COGNOME__________________

NOME____________________

NOTA: dovrà essere consegnato l’elaborato dell’es.1 come file <COGNOME>.s

1) [22/30] Trovare il codice assembly RISC-V corrispondente al seguente micro-benchmark (utilizzando solo e unicamente istruzioni
dalla tabella sottostante), rispettando le convenzioni di uso dei registri dell’assembly (riportate qua sotto, per riferimento).

float sum_abs_pairwise(float *p, int N) {
 float s = 0.0f;
 for (float *pi = p; pi < p + (N - 1); ++pi)
 for (float *pj = pi + 1; pj < p + N; ++pj) {
 float d = *pi - *pj;
 if (d < 0.0f) d = -d;
 s += d;
 }
 return s;
}

int main() {
 int N = 6;
 float *p = (float*) sbrk(N * sizeof(float));
 for (int k = 0; k < N; ++k) *(p + k) = (float)k - 4.5f;
 float s = sum_abs_pairwise(p, N);
 print_string("Sum abs pairwise diffs: "); print_float(s);
 exit(0);
}

RISCV Instructions (RV64IMFD) v230703
Instruction coding (hexadecimal)

Instruction Example Register operation
Meaning

(** instructions available only in RV64, i.e. 64-bit case) funct7/imm funct3 opcode

00 0 33/3b add add/addw x5,x6,x7 x5  x6 + x7 Add two operands; exception possible (addw**)
20 0 33/3b subtract sub/subw x5,x6,x7 x5  x6 – x7 Subtracts two operands; exception possible (subw**)

imm 0 13/1b add immediate addi/addiw x5,x6,100 x5  x6 + 100 Add a constant ; exception possible (addiw**)
01 0 33/3b multiply mul/mulw x5,x6, x7 x5  x6 * x7 (signed/word) Lower 64 bits of 128-bits product (mulw**)
01 1 33 multiply high mulh x5,x6,x7 x5  x6 * x7 Higher 64bits of 128-bits product
01 4 33/3b division div/divw x5,x6,x7 x5  x6/x7 (signed/word) division (divw**)
01 6 33/3b reminder rem/remw x5,x6,x7 x5  x6 % x7 Reminder of the division (remw**)
00 2/3 33 set on less than slt/sltu x5,x6,x7 if (x6 < x7) x5  1; else x5  0 signed compare x6 and x7 (less than)

imm 2/3 13 set on less than immediate slti/sltiu x5,x6,100 if (x6 < 100) x5 1; else x5  0 unsigned compare x6 and 100 (less than)
00 7/6/4 33 and / or / xor and/or/xor x5,x6,x7 x5 x6&x7 / x6|x7 / x6^ x7 Logical AND/OR/XOR register operand

imm 7/6/4 13 and /or / xor immediate andi/ori/xori x5,x6,100 x5  x6&100 / x6|100 / x6^100 Logical AND/OR/XOR constant operand
0 1 33/3b shift left logical sll/sllw x5,x6,x7 x5  x6 << x7 Shift left by register (sllw**)

imm 1 13/1b shift left logical immediate slli/slliw x5,x6,10 x5  x6 << 10 Shift left by the immediate value (slliw**)
0 5 33/3b shift right logical srl/srlw x5,x6,x7 x5  x6 >> x7 Shift right by register (srlw**)

imm 5 13/1b shift right logical immediate srli/srliw x5,x6,10 x5  x6 >> 10 Shift left by immediate value (srliw**)
20 5 33/3b shift right arithmetic sra/sraw x5,x6,x7 x5  x6 >> x7 (arith.) Shift right by register (sign is preserved) (sraw**)

imm 5 13/1b shift right arithmetic immediate srai/sraiw x5,x6,10 x5  x6 >> 10 (arith.) Shift right by immediate value (sraiw**)
imm 3/2/0 03 load dword / word / byte ld/lw/lb x5,100(x6) x5  MEM[x6+100] Data from memory to register
imm 6/4 03 load word / byte unsigned lwu/lbu x5,100(x6) x5  MEM[x6+100] Data from mem. To reg.; no sign extension (lwu**)
imm 3/2 23 store dword / word / byte sd/sw/sb x5,100(x6) MEM[x6+100]  x5 Data from register to memory (sw**)

imm[31:12] - 37 load upper immediate lui x5,0x12345 x5  0x1234’5000 Load most significant 20 bits

PSEUDOINSTRUCTION load address la x5,var x5  &var (PSEUDO INST.)
load address of ‘var’ in x5

REAL: lui x5,H20(&var);ori x5, L12(&var)
INST. (H20=high 20 bits of &var; L12=low 12 bits of &var)

imm[31:12] (rd=0)
imm[11:0] (rs1=rs2=0)

-
0

6f/63 jump/branch j/b label PC+=off (off=PC-&label) (PS.INST.) REAL INST.: jal x0,offset/beq x0,x0,offset

imm[31:12] (rd=1) - 6f jump and link (offset) jal label x1(PC+4); PC+=offset (PS. INST.) REAL INST.: jal x1,offset (offset=PC-&label)
Imm (rd=0,rs=1) 0 67 return from procedure ret PCx1 (PSEUDO INST.) REAL INST.: jalr x0,0(x1)

imm 0 67 jump and link register jalr x1, 100(x5) x1  (PC + 4); PC=x5+100 Procedure return; indirect call
imm÷2 0/1 63 branch on equal / not-equal beq/bne x5,x6,100 if (x5 = =/!= x6) PC=PC+100 Equal / Not-equal test; PC relative branch

00 (rs1=0,rs2=0,rd=0) 0 73 ecall ecall SEPCPC;PCSTVEC;save PL/IE;PL=1;IE=0 Call OS (service number in a7); PL= privilege lev; IE=int.en.
08 (rs1=0,rs2=2,rd=0) 0 73 sret sret PCSEPC; restore PL/IE Exit supervisor mode; PL= privilege lev; IE=int.en.

PSEUDOINSTRUCTION move mv x5,x6 x5  x6 (PSEUDO INST.) REAL INST.: add x5,x0,x6
PSEUDOINSTRUCTION load immediate li x5,100 x5  100 (PSEUDO INST.) REAL INST.: addi x5,x0,100
PSEUDOINSTRUCTION no operation (nop) nop do nothing (PSEUDO INST.) REAL INST.: addi x0,x0,0

{0,1} / {4,5} 0 53 floating point add/sub fadd/fsub.{s,d} f0,f1,f2 f0f1+f2 / f0f1-f2 Single or double precision add / subtract
{8,9} / {c,d} 0 53 floating point multiplication/division fmul/fdiv.{s,d} f0,f1,f2 f0f1*f2 / f0f1/f2 Single or double precision multiplication / division
PSEUDOINSTRUCTION floating point move between f-regs fmv.{s,d} f0,f1 f0f1 (PSEUDO INST.) REAL INST.: fsgnj.{s,d} f0,f1,f1
PSEUDOINSTRUCTION floating point negate fneg.{s,d} f0,f1 f0  (f1) (PSEUDO INST.) REAL INST.: fsgnjn.{s,d} f0,f1,f1
PSEUDOINSTRUCTION floating point absolute value fabs.{s,d} f0,f1 f0 | f1 | (PSEUDO INST.) REAL INST.: fsgnjx.{s,d} f0,f1,f1

{50,51} 0/1/2 53 floating point compare fle/flt/feq.{s,d} x5,f0,f1 x5 (f0<f1) Single and double: compare f0 and f1 <=,<,==
{70,71} (rs2=0) 0 53 move between x (integer) and f regs fmv.x.{s,d} x5,f0 x5f0 (no conversion) Copy (no conversion)
{78,79} (rs2=0) 0 53 move between f and x regs fmv.{s,d}.x f0,x5 f0x5 (no conversion) Copy (no conversion)

imm 2 7 load/store floating point (32bit) flw/fsw f0,0(x5) f0MEM[x5] / MEM[x5]f0 Data from FP register to memory
imm 3 7 load/store floating point (64bit) fld/fsd f0,0(x5) f0MEM[x5] / MEM[x5]f0 Data from FP register to memory

21/20 (rs2=0) 7 53 convert to/from double from/to single fcvt.d.s/fcvt.s.d f0,f1 f0 (double)f1 / f0 (single)f1 Type conversion
{60,61} (rs2=0) 7 53 convert to integer from {single,double} fcvt.w.{s,d} x5,f0 x5 (int)f0 Type conversion
{68,69} (rs2=0) 7 53 convert to {single,double} from integer fcvt.{s,d}.w f0,x5 f0 ({single,double})x5 Type conversion
{2c,2d} (rs2=0) 0 53 square root fsqrt.{s,d} f0,f1 f0 square root of f1 Single or double square root

{10,11} 0/1/2 53 sign injection fsgnj/jn/jx.{s,d} f0,f1,f2 f0sgn(f2)|f1| / sgn(f2)|f1| / sgn(f2)f1 Extract the mantissa and exp. from f1 and sign from f2

System
calls

Service Name Serv.No.(a7) INPUT Arguments OUTPUT Args Service Name Serv.No.(a7) INPUT Arguments OUTPUT Arguments
print_int 1 a0=integer to print --- read_float 6 --- fa0=float

print_float 2 fa0=float to print --- read_double 7 --- fa0=double
print_double 3 fa0=double to print --- read_string 8 a0=address of input buffer, a1=max chars to read ---
print_string 4 a0=address of ASCIIZ string to print --- sbrk 9 a0=Number of bytes to be allocated a0=pointer to allocated memory

read_int 5 --- a0=integer exit 10 --- ---

2) [8/30] Si consideri una cache di dimensione 48B e a 3 vie di tipo write-back/write-non-allocate. La dimensione
del blocco è 4 byte, il tempo di accesso alla cache è 4 ns e la penalità in caso di miss è pari a 40 ns, la politica di
rimpiazzamento è LRU. Il processore effettua i seguenti accessi in cache, ad indirizzi al byte: 748, 377, 319,
283, 243, 391, 144, 770, 945, 61, 194. Tali accessi sono alternativamente letture e scritture. Per la sequenza
data, ricavare il tempo medio di accesso alla cache, riportare i tag contenuti in cache al termine, i bit di
modifica (se presenti) e la lista dei blocchi (ovvero il loro indirizzo) via via eliminati durante il rimpiazzamento
ed inoltre in corrispondenza di quale riferimento il blocco è eliminato.

Register
Usage

Register ABI Name Usage Register ABI Name Usage Register ABI Name Usage
x10-x11 a0-a1 arguments and results x0 zero The constant value 0 f10-f11 fa0-fa1 Argument and Return values

x9, x18-x27 s1, s2-s11 Saved x8, x2 s0/fp, sp frame pointer, stack pointer f8-f9, f18-f27 fs0-fs1, fs2-fs11 Saved registers
x5-7, x28-x31 t0-t2, t3-t6 Temporaries x1, x3 ra, gp return address, global pointer f0 – f7, f28-f31 ft0-ft7, ft8-ft11 Temporaries registers

x12-x17 a2-a7 Arguments x4 tp thread pointer f12-17 fa2-fa7 Function arguments

DA RESTITUIRE INSIEME AGLI ELABORATI e A TUTTI I FOGLI
 NON USARE FOGLI NON TIMBRATI
 ANDARE IN BAGNO PRIMA DELL’INIZIO DELLA PROVA
 NO FOGLI PERSONALI, NO TELEFONI, SMARTPHONE/WATCH, ETC

